Фотосинтетически активная радиация: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 36: Строка 36:
[[Файл:Photosynthesis yield photon flux spectral weighting.svg|thumb|300px|Весовой коэффициент фотосинтеза. Кривая весового коэффициента фотонов позволяет перевести PPFD в YPF; кривая весового коэффициента энергии позволяет сделать тоже самое для ФАР, выраженной в ваттах или джоулях.]]
[[Файл:Photosynthesis yield photon flux spectral weighting.svg|thumb|300px|Весовой коэффициент фотосинтеза. Кривая весового коэффициента фотонов позволяет перевести PPFD в YPF; кривая весового коэффициента энергии позволяет сделать тоже самое для ФАР, выраженной в ваттах или джоулях.]]


Как уже упоминалось выше, значение ФАР не учитывает разницу между разными длинами волн в диапазоне 400—700 нм. Кроме того, используется приближение, что волны за пределами этого диапазона имеют нулевую фотосинтетическую активность. Если известен точный спектр излучения, то плотность фотосинтетического фотонного потока (PPFD) в мкмоль/с можно модифицировать, используя весовые коэффициенты для каждой длинны волны. Этот параметр, представляет собой ФАР, взвешенную в соответствии с эффективностью фотосинтеза по каждой длине волны. Он носит название ''усваиваемый растением поток фотонов'' {{lang-en|yield photon flux (YPF)}}<ref>[http://www.ncbi.nlm.nih.gov/pubmed/11537894 Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. - PubMed - NCBI<!-- Заголовок добавлен ботом -->]</ref>. Красная кривая на графике показывает, что фотоны с длинной волны около 610 нм (оранжево-красный) обладают максимальной фотосинтетической активностью в расчёте на один фотон. Однако поскольку коротковолновые фотоны несут больше энергии на один фотон, то максимум фотосинтеза в расчёте на одну единицу энергии находится при большей длине волны, около 650 нм (тёмно-красный).
Как уже упоминалось выше, значение ФАР не учитывает разницу между разными длинами волн в диапазоне 400—700 нм. Кроме того, используется приближение, что волны за пределами этого диапазона имеют нулевую фотосинтетическую активность. Если известен точный спектр излучения, то плотность фотосинтетического фотонного потока (PPFD) в мкмоль/с можно модифицировать, используя весовые коэффициенты для каждой длинны волны. Этот параметр, представляет собой ФАР, взвешенную в соответствии с эффективностью фотосинтеза по каждой длине волны. Он носит название ''усваиваемый растением поток фотонов'' {{lang-en|yield photon flux (YPF)}}<ref>[http://www.ncbi.nlm.nih.gov/pubmed/11537894 Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. — PubMed — NCBI<!-- Заголовок добавлен ботом -->]</ref>. Красная кривая на графике показывает, что фотоны с длинной волны около 610 нм (оранжево-красный) обладают максимальной фотосинтетической активностью в расчёте на один фотон, поскольку коротковолновые фотоны несут больше энергии на один фотон. А вот максимум фотосинтеза в расчёте на одну единицу энергии находится при большей длине волны, около 650 нм (тёмно-красный).

Существует типичное заблуждение относительно влияния качества света на рос растений, поскольку многие производители утверждают, что можно значительно улучшить показатели роста изменив спектральное распределение или иначе говоря соотношение цветов в падающем свете<ref>{{Cite journal|title = Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures|url = http://dx.doi.org/10.1371/journal.pone.0099010|journal = PLoS ONE|date = 2014-06-06|pmc = 4048233|pmid = 24905835|pages = e99010|volume = 9|issue = 6|doi = 10.1371/journal.pone.0099010|author = Jacob A. Nelson, Bruce Bugbee}}</ref>. Этот утверждение базируется на широко распространённой оценке влияния качества света на фотосинтез, полученного но основе кривой усваиваемого растением потока фотонов или YPF-кривой, которая показывает, что оранжевые и красные фотоны с длинной волны 600—630 нм дают на 20-30 % больше фотосинтеза чем голубые и циановые фотоны с длинной волны 400—540 yv<ref>{{Cite journal|title = The action spectrum, absorptance and quantum yield of photosynthesis in crop plants|url = http://www.sciencedirect.com/science/article/pii/0002157171900227|journal = Agricultural Meteorology|date = 1971-01-01|pages = 191–216|volume = 9|doi = 10.1016/0002-1571(71)90022-7|author = K. J. McCree}}</ref>. Следует помнить, что кривая YPF была построена на основе коротких измерений фотосинтеза в одном листе при низком освещении. Некоторые более длительные исследования, в которых использовались цельные растения при сильной освещении, указывают на то, что, по-видимому, качество света значительно меньше влияет на рост растений чем его количество<ref>{{Cite journal|title = Photobiological Interactions of Blue Light and Photosynthetic Photon Flux: Effects of Monochromatic and Broad-Spectrum Light Sources|url = http://onlinelibrary.wiley.com/doi/10.1111/php.12233/abstract|journal = Photochemistry and Photobiology|date = 2014-05-01|issn = 1751-1097|pages = 574–584|volume = 90|issue = 3|doi = 10.1111/php.12233|author = Kevin R. Cope, M. Chase Snowden, Bruce Bugbee}}</ref>.


== Примечания ==
== Примечания ==

Версия от 00:24, 3 апреля 2016

Фотосинтетически активная радиация или сокращённо ФАР — часть доходящей до биоценозов солнечной радиации в диапазон от 400 до 700 нм, используемая растениями для фотосинтеза. Этот участок спектра более или менее соответствует области видимого излучения. Фотоны с более короткой длинной волны несут слишком много энергии, поэтому могут повредить клетки, но они по большей части отфильтровываются озоновым слоем в стратосфере. Кванты с большими длинами волн несут недостаточно энергии и поэтому не используются для фотосинтеза большинством организмов.

Некоторые организмы, такие как цианобактерии, пурпурные бактерии и гелиобактерии всё же могут использовать энергию света с большей длинной волны, чем 700 нм (ближняя инфракрасная область). Эти бактерии обитают в местах с пониженной освещённостью: на дне застойных прудов, в осадках или океанских глубинах. Благодаря своим пигментам они образуют разноцветные бактериальные маты зелёного, красного и пурпурного цвета.

Спектр действия ФАР в сравнении со спектрами поглощения хлорофилла а, хлорофилла b и каротиноидов.

Самый многочисленный пигмент — хлорофилл — наиболее эффективно поглощает красный и синий свет. Вспомогательные пигменты такие как каротиноиды и ксантофиллы поглощают некоторое количество зелёного и синего цвета и передают его в реакционный центр фотосинтеза, однако большая часть зелёного цвета отражается и придает листьям их характерный цвет.

Измерения ФАР используются в сельском хозяйстве, лесоводстве и океанографии. Одно из требований к продуктивному участку земли — адекватное значения ФАР, то есть этот параметр можно использовать для оценки потенциальной производительности участка. Сенсоры ФАР, расположенные на разных уровнях под навесом леса позволяют измерить доступную для утилизации экосистемой ФАР. Измерения этого параметра также используются для определения эвтрофической зоны океана.

Единицы измерения

Обычно ФАР измеряется в мкмоль фотонов м−2с−1, что обозначают как плотность фотосинтетического фотонного потока англ. photosynthetic photon flux density, PPFD. Фотосинтетический фотонный поток — суммарное число фотонов, излучаемых в секунду в диапазоне длин волн от 400 до 700 нм (мкмоль/с). Иногда эту величину выражают в эйнштейнах, то есть, мкЭ м−2 с−1, хотя эта единица не является стандартной и её использование часто неоднозначно. ФАР можно выражать в единицах энергии (интенсивность излучения, Ватт2); это актуально при рассмотрении баланса энергии фотосинтезирующих организмов, но, поскольку фотосинтез является квантовым процессом, то в физиологии растений ФАР чаще всего выражают в единицах PPFD.

Коэффициенты перевода из ФАР в энергетических единицах в ФАР в молях фотонов зависят от спектра излучения источника света (см. эффективность фотосинтеза). В нижележащей таблице приведены коэффициенты перевода из Ваттов в фотоны спектра абсолютно чёрного тела, усечённого до диапазона 400—700 нм. В ней также приведены единицы измерения световой отдачи для каждого из источников света, а также той части спектра абсолютно чёрного тела, которая соответствует ФАР.

T
(K)
η_v
(лм/Вт*)
η_фотоны
(мкмоль/Дж* или мкмоль с−1Вт*−1)
η_фотоны
(моль в день−1 Вт*−1)
η_ФАР
(Вт*/Вт)
3000 (тёплый белый) 269 4.98 0.43 0.0809
4000 277 4.78 0.413 0.208
5800 (дневной) 265 4.56 0.394 0.368
Примечание: Вт* и Дж* соответствую ваттам и джоулям ФАР (400—700 нм).

Например, источник света в 1000 люменов при температуре 5800 K будет излучать приблизительно 1000/265 = 3.8 Вт ФАР, что эквивалентно 3.8*4.56 = 17.3 мкмоль/с. Для абсолютно чёрного источника света при 5800 K, каковым приблизительно является солнце, в виде ФАР излучается 0.368 от его общего излучения. Для искусственных источников света, которые обычно не обладают спектром абсолютно чёрного тела, эти коэффициенты перевода являются приблизительными.

Значения в таблице рассчитаны как

где  — спектр излучения чёрного тела в соответствии с формулой Планка,  — стандартная спектральная световая эффективность монохроматического излучения, обозначают длины волн диапазона ФАР (400 и 700 нм), a  — число Авогадро.

Усваиваемый растением поток фотонов

Весовой коэффициент фотосинтеза. Кривая весового коэффициента фотонов позволяет перевести PPFD в YPF; кривая весового коэффициента энергии позволяет сделать тоже самое для ФАР, выраженной в ваттах или джоулях.

Как уже упоминалось выше, значение ФАР не учитывает разницу между разными длинами волн в диапазоне 400—700 нм. Кроме того, используется приближение, что волны за пределами этого диапазона имеют нулевую фотосинтетическую активность. Если известен точный спектр излучения, то плотность фотосинтетического фотонного потока (PPFD) в мкмоль/с можно модифицировать, используя весовые коэффициенты для каждой длинны волны. Этот параметр, представляет собой ФАР, взвешенную в соответствии с эффективностью фотосинтеза по каждой длине волны. Он носит название усваиваемый растением поток фотонов англ. yield photon flux (YPF)[1]. Красная кривая на графике показывает, что фотоны с длинной волны около 610 нм (оранжево-красный) обладают максимальной фотосинтетической активностью в расчёте на один фотон, поскольку коротковолновые фотоны несут больше энергии на один фотон. А вот максимум фотосинтеза в расчёте на одну единицу энергии находится при большей длине волны, около 650 нм (тёмно-красный).

Существует типичное заблуждение относительно влияния качества света на рос растений, поскольку многие производители утверждают, что можно значительно улучшить показатели роста изменив спектральное распределение или иначе говоря соотношение цветов в падающем свете[2]. Этот утверждение базируется на широко распространённой оценке влияния качества света на фотосинтез, полученного но основе кривой усваиваемого растением потока фотонов или YPF-кривой, которая показывает, что оранжевые и красные фотоны с длинной волны 600—630 нм дают на 20-30 % больше фотосинтеза чем голубые и циановые фотоны с длинной волны 400—540 yv[3]. Следует помнить, что кривая YPF была построена на основе коротких измерений фотосинтеза в одном листе при низком освещении. Некоторые более длительные исследования, в которых использовались цельные растения при сильной освещении, указывают на то, что, по-видимому, качество света значительно меньше влияет на рост растений чем его количество[4].

Примечания

  1. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. — PubMed — NCBI
  2. Jacob A. Nelson, Bruce Bugbee (2014-06-06). "Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures". PLoS ONE. 9 (6): e99010. doi:10.1371/journal.pone.0099010. PMC 4048233. PMID 24905835.{{cite journal}}: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка)
  3. K. J. McCree (1971-01-01). "The action spectrum, absorptance and quantum yield of photosynthesis in crop plants". Agricultural Meteorology. 9: 191—216. doi:10.1016/0002-1571(71)90022-7.
  4. Kevin R. Cope, M. Chase Snowden, Bruce Bugbee (2014-05-01). "Photobiological Interactions of Blue Light and Photosynthetic Photon Flux: Effects of Monochromatic and Broad-Spectrum Light Sources". Photochemistry and Photobiology. 90 (3): 574—584. doi:10.1111/php.12233. ISSN 1751-1097.{{cite journal}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)

Литература

  • Gates, David M. (1980). Biophysical Ecology, Springer-Verlag, New York, 611 p.
  • McCree, Keith J. (1972a). «The action spectrum, absorptance and quantum yield of photosynthesis in crop plants». Agricultural and Forest Meteorology 9:191-216.
  • McCree, Keith J. (1972b). «Test of current definitions of photosynthetically active radiation against leaf photosynthesis data». Agricultural and Forest Meteorology 10:443-453.
  • McCree, Keith J. (1981). «Photosynthetically active radiation». In: Encyclopedia of Plant Physiology, vol. 12A. Springer-Verlag, Berlin, pp. 41-55.

Внешние ссылки