Эндонуклеазы рестрикции

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Эндонуклеазы рестрикции, рестриктазы (от лат. restrictio — ограничение) — группа ферментов, относящихся к классу гидролаз, катализирующих реакцию гидролиза нуклеиновых кислот.

В отличие от экзонуклеаз, рестриктазы расщепляют нуклеиновые кислоты не с конца молекулы, а в середине. При этом каждая рестриктаза узнаёт определённый участок ДНК длиной от четырёх пар нуклеотидов и расщепляет нуклеотидную цепь внутри участка узнавания или вне его.

Защита бактериального генома от собственной рестриктазы осуществляется с помощью метилирования нуклеотидных остатков аденина и цитозина (маскированием)[1].

Классификация[править | править вики-текст]

Выделяют три основных типа (или класса) ферментов рестрикции, сайты узнавания для которых могут быть симметричными (палиндромными) и несимметричными[2]:

  • Рестриктазы первого типа (например, ЕсоК из Escherichia coli К12) узнают определённую последовательность нуклеотидов и разрезают двухцепочную молекулу ДНК неподалёку от этой последовательности в произвольной точке и само место разреза не строго специально (по-видимому, после образования комплекса с ДНК фермент неспецифически взаимодействует с удалённой областью ДНК или передвигается вдоль цепи ДНК).
  • Рестриктазы второго типа (например, EcoRI) узнают определённую последовательность и разрезают двойную спираль ДНК в определённой фиксированной точке внутри этой последовательности. Рестриктазы этого типа узнают палиндромные последовательности, которые обладают центральной осью и считываются одинаково в обе стороны от оси симметрии.
  • Рестриктазы третьего промежуточного типа (например, EcoPI) узнают нужную последовательность и разрезают двухцепочную молекулу ДНК, отступив определённое число нуклеотидных пар от её конца (или в нескольких точках на разном удалении от сайта узнавания). При этом образуются фрагменты ДНК либо с ровными (тупыми) концами, либо с выступающими (липкими) 5'- или 3'-концами. Эти рестриктазы узнают асимметричные сайты.

К 2007 году выделено более трёх тысяч эндонуклеаз рестрикции.[3] Более шестисот рестриктаз доступны в виде коммерческих препаратов и повседневно используются в лабораториях для модификации ДНК и решения генно-инженерных задач.[4][5][6]

Изошизомеры[править | править вики-текст]

Изошизомеры — это пары эндонуклеаз рестрикции, имеющих специфичность к распознаванию одинаковых последовательностей, но иногда отличающихся по наличию метилированных нуклеотидных остатков, и разрезающих эти последовательности в одинаковых местах. Например, изошизомерами являются рестриктазы Sph I (CGTAC^G) и Bbu I (CGTAC^G). Первый выделенный фермент для узнавания и специфического разрезания заданной последовательности, называют прототипом, а все остальные подобные рестриктазы называют изошизомерами.

Изошизомеры выделяют из разных штаммов бактерий и поэтому разные изошизомеры могут требовать разных условий реакции.

Гетерошизомеры (неошизомеры)[править | править вики-текст]

Фермент, узнающий такую же последовательность, но разрезающий её по-другому, называют гетерошизомером (неошизомером). Изошизомеры, таким образом, являются частным случаем гетерошизомеров. Например, рестриктазы Sma I (GGG^CCC) и Xma I (G^GGCCC) являются гетерошизомерами, но не изошизомерами друг для друга.

Изокаудомеры[править | править вики-текст]

Рестриктазы, распознающие совершенно разные последовательности, но образующие одинаковые концы, называют изокаудомерами.

Искусственные рестриктазы[править | править вики-текст]

В генной инженерии широко используются искусственные рестриктазы получаемые путем слияния ДНК-связывающего домена цинкового пальца с ДНК-разрезающим доменом нуклеазы [7][8] Домен цинкового пальца может быть спроектирован так чтобы узнавать и связываться с желаемой последовательностью ДНК[9]. Альтернативой нуклеазам с цинковым пальцем являются искусственные ферменты рестрикции TALEN получаемые путем слияния ДНК-связывающего домена TAL эффектора с доменом расщепления ДНК [10][11][12][13].

Эндонуклеазы работающие по «наводке» РНК[править | править вики-текст]

Для редактирования генома в клетках человека используются также эндонуклеазы системы CRISPR-Cas расщепляющие определенные последовательности ДНК по «наводке» комплементарной РНК [14][15][16][17][18][19] В отличие от цинковых пальцев и TALEN, системе CRISPR-Cas для узнавания ДНК требуется только создание соответствующей последовательности РНК «гида», а не создание новых белковых доменов фермента, что делает этот метод гораздо более доступным благодаря простоте и сравнительной дешевизне [20][21][22]

Значение[править | править вики-текст]

В практической молекулярной биологии чаще всего используются рестриктазы II типа, сайт узнавания для которых в большинстве случаев представляет собой палиндром. Все рестриктазы II типа — Mg2+-зависимы.

Рестриктазы — часть сложной системы рестрикции-модификации, используемой бактериальными клетками для регуляции содержания и активности ДНК в клетке.

Открытие рестриктаз в 1970-х годах вместе с разработкой способов секвенирования ДНК послужило основным толчком для развития генетической инженерии.

В настоящее время рестриктазы с различными сайтами узнавания являются основным инструментом генетических исследований и генной инженерии.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Альбертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки: в трех томах. — 2. — Москва: Мир, 1994. — Т. 1. — 517 с. — 10 000 экз. — ISBN 5030019855
  2. Айала Ф. Д. Современная генетика. 1987.
  3. Roberts RJ, Vincze T, Posfai J, Macelis D. (2007). «REBASE--enzymes and genes for DNA restriction and modification». Nucleic Acids Res 35 (Database issue): D269–70. DOI:10.1093/nar/gkl891. PMID 17202163.
  4. Primrose, Sandy B.; Old, R. W. Principles of gene manipulation: an introduction to genetic engineering. — Oxford: Blackwell Scientific, 1994. — ISBN 0-632-03712-1
  5. Micklos, David A.; Bloom, Mark V.; Freyer, Greg A. Laboratory DNA science: an introduction to recombinant DNA techniques and methods of genome analysis. — Menlo Park, Calif: Benjamin/Cummings Pub. Co, 1996. — ISBN 0-8053-3040-2
  6. Adrianne Massey; Helen Kreuzer Recombinant DNA and Biotechnology: A Guide for Students. — Washington, D.C: ASM Press, 2001. — ISBN 1-55581-176-0
  7. Carroll, D. (2011) Genome engineering with zinc-finger nucleases. Genetics, 188(4), 773-782.doi: 10.1534/genetics.111.131433
  8. Fujii W, Kano K, Sugiura K, Naito K (2013) Repeatable Construction Method for Engineered Zinc Finger Nuclease Based on Overlap Extension PCR and TA-Cloning. PLoS ONE 8(3): e59801. doi:10.1371/journal.pone.0059801
  9. Zhu, C., Gupta, A., Hall, V. L. et al. & Wolfe, S. A. (2013). Using defined finger–finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic acids research, 41(4), 2455-246541 doi: 10.1093/nar/gks1357.
  10. Mussolino, C., & Cathomen, T. (2012). TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 23(5), 644-650 doi: org/10.1016/j.copbio.2012.01.013
  11. Beumer, K. J., Trautman, J. K., Christian, M.,et al. & Carroll, D. (2013). Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila. G3: Genes| Genomes| Genetics, 3(10), 1717-1725 doi: 10.1534/g3.113.007260
  12. Sun, N., & Zhao, H. (2013). Transcription activator‐like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnology and bioengineering, 110(7), 1811–1821 doi: 10.1002/bit.24890
  13. Zhang Z, Zhang S, Huang X, Orwig KE, Sheng Y (2013) Rapid Assembly of Customized TALENs into Multiple Delivery Systems. PLoS ONE 8(11): e80281. doi:10.1371/journal.pone.0080281
  14. Cho, S. W., Kim, S., Kim, J. M., & Kim, J. S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature biotechnology, 31, 230–232 doi:10.1038/nbt.2507
  15. Hsu, P. D., Scott, D. A., Weinstein, J. A.,et al. & Zhang, F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nature biotechnology, 31(9), 827-832.doi:10.1038/nbt.2647
  16. Golic, K. G. (2013) RNA-Guided Nucleases: A New Era for Engineering the Genomes of Model and Nonmodel Organisms. Genetics, 195(2), 303-308.
  17. Ran, F. A., Hsu, P. D., Wright, J., et al. & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281-2308 doi:10.1038/nprot.2013.143
  18. Giedrius Gasiunas, Virginijus Siksnys (2013) RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends in Microbiology, 21(11), 562-567, doi: 10.1016/j.tim.2013.09.001
  19. Luhan Yang, Prashant Mali, Caroline Kim-Kiselak, and George Church (2014) CRISPR-Cas Mediated Targeted Genome Editing in Human Cells. In: Gene Correction. Methods and Protocols. Series: Methods in Molecular Biology, Vol. 1114 Storici, Francesca (Ed.) ISBN 978-1-62703-760-0
  20. Uri Ben-David (2013) Flowing through the CRISPR-CAScade: Will genome editing boost cell therapies? Molecular and Cellular Therapies 2013, 1:3 doi:10.1186/2052-8426-1-3
  21. Neena K. Pyzocha, F. Ann Ran, Patrick D. Hsu, and Feng Zhang (2014) RNA-Guided Genome Editing of Mammalian Cells. In: Gene Correction. Methods and Protocols. Series: Methods in Molecular Biology, Vol. 1114 Storici, Francesca (Ed.) ISBN 978-1-62703-760-0
  22. Li, M., Suzuki, K., Kim, N. Y., Liu, G. H., & Belmonte, J. C. I. (2013). A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. Journal of Biological Chemistry, jbc-R113.doi: 10.1074/jbc.R113.488247