Химическое осаждение из газовой фазы

Материал из Википедии — свободной энциклопедии
(перенаправлено с «CVD-процесс»)
Перейти к: навигация, поиск
Плазма ускоряет рост углеродных нанотрубок в лабораторной установке PECVD (Plasma Enhanced CVD).

Химическое осаждение из газовой фазы (ХОГФ) (англ. Chemical vapor deposition (CVD)) — плазмохимический процесс, используемый для получения высокочистых твёрдых материалов. Процесс часто используется в индустрии полупроводников для создания тонких плёнок. Как правило, при процессе CVD подложка помещается в пары одного или нескольких веществ, которые, вступая в реакцию и/или разлагаясь, производят на поверхности подложки необходимое вещество. Часто образуется также газообразный продукт реакции, выносимый из камеры с потоком газа.

С помощью CVD-процесса производят материалы различных структур: монокристаллы, поликристаллы, аморфные тела и эпитаксиальные. Примеры материалов: кремний, углеродное волокно, углеродное нановолокно, углеродные нанотрубки, SiO2, вольфрам, карбид кремния, нитрид кремния, нитрид титана, различные диэлектрики, а также синтетические алмазы.

Виды CVD[править | править вики-текст]

Термический CVD с подогревом стен
Усиленный плазмой CVD

Различные виды CVD широко используются и часто упоминаются в литературе. Процессы различаются по способам запуска химических реакций и по условиям протекания процесса.

Классификация по давлению[править | править вики-текст]

  • CVD при атмосферном давлении (англ. Atmospheric Pressure chemical vapor deposition (APCVD)) — CVD-процесс проходит при атмосферном давлении.
  • CVD при пониженном давлении (англ. Low pressure chemical vapor deposition (LPCVD)) — CVD-процесс при давлении ниже атмосферного. Пониженное давление снижает вероятность нежелательных реакций в газовой фазе и ведёт к более равномерному осаждению плёнки на подложку. Большинство современных CVD-установок — либо LPCVD, либо UHVCVD.
  • Вакуумный CVD (англ. Ultra high vacuum chemical vapor deposition (UHVCVD)) — CVD-процесс проходит при очень низком давлении, обычно ниже 10−6 Па (~ 10−4 мм рт. ст.).

Классификация по физическим характеристикам пара[править | править вики-текст]

  • CVD с участием аэрозоля (англ. Aerosol Assisted Chemical vapor deposition (AACVD)) — CVD-процесс в котором прекурсоры транспортируются к подложке с помощью аэрозоля, который может создаваться различными способами, например, ультразвуком.
  • CVD с прямой инжекцией жидкости (англ. Direct liquid injection chemical vapor deposition (DLICVD)) — CVD-процесс, при котором прекурсор подаётся в жидкой фазе (в чистом виде либо растворённым в растворителе). Жидкость впрыскивается в камеру через инжектор (часто используются автомобильные). Данная технология позволяет достигать высокой производительности формирования плёнки.

Плазменные методы[править | править вики-текст]

  • CVD активированный микроволновой плазмой (англ. Microwave plasma chemical vapor deposition (MPCVD)).
  • Усиленный плазмой CVD (англ. Plasma enhanced chemical vapor deposition (PECVD)) — CVD-процесс, который использует плазму для увеличения скорости реакции прекурсоров. PECVD работает при более низких температурах, что критично при производстве полупроводников.
  • Усиленный непрямой плазмой CVD (англ. Remote plasma-enhanced CVD (RPECVD)) — похоже на PECVD, но подложка не в области разрядки плазмы, что снижает температуру реакции до комнатной.

Иные методы[править | править вики-текст]

  • Атомно-слоевое CVD (англ. Atomic layer CVD (ALCVD)) — формирует последовательные слои различных материалов для создания многоуровневой кристаллической плёнки.
  • CVD сгорания (англ. Combustion Chemical Vapor Deposition (CCVD) ) — процесс сгорания в открытой атмосфере.
  • CVD с горячей нитью (англ. Hot wire chemical vapor deposition (HWCVD) / hot filament CVD (HFCVD)) — также известен как каталитический CVD (англ. Catalitic chemical vapor deposition (Cat-CVD)). Использует горячий носитель для ускорения реакции газов.
  • Металлорганический CVD (англ. Metalorganic chemical vapor deposition (MOCVD)) — CVD-процесс, использующий металлоорганические прекурсоры.
  • Гибридное физико-химическое парофазное осаждение (англ. Hybrid Physical-Chemical Vapor Deposition (HPCVD)) — процесс, использующий и химическую декомпозицию прекурсора, и испарение твёрдого материала.
  • Быстродействующее термическое химическое парофазное осаждение (англ. Rapid thermal CVD (RTCVD)) — CVD-процесс, использующий лампы накаливания или другие методы быстрого нагрева подложки. Нагрев подложки без разогрева газа позволяет сократить нежелательные реакции в газовой фазе.
  • Парофазная эпитаксия (англ. Vapor phase epitaxy (VPE)).

Материалы для микроэлектроники[править | править вики-текст]

В этой секции обсуждаются CVD-процессы, часто используемые для производства микросхем.

Поликристаллический кремний[править | править вики-текст]

Поликристаллический кремний получают из силанов при следующей реакции:

SiH4 → Si + 2 H2

Реакция обычно проводится в LPCVD системах, либо с подачей чистого силана, или растворе силана в 70—80 % азоте. Температуры между 600 и 650 °С и давление от 25 до 150 Па позволяют достигать скорости отложения от 10 до 20 нм в минуту. Альтернативное решение использует водородно-базированный раствор, что снижает скорость роста при повышении температуры до 850 или даже 1050 °С.

Диоксид кремния[править | править вики-текст]

Диоксид кремния (часто называемый просто «оксидом» в индустрии полупроводников) может наноситься несколькими различными процессами. Реакции следующие:

SiH4 + O2 → SiO2 + 2 H2
SiCl2H2 + 2 N2O → SiO2 + 2 N2 + 2 HCl
Si(OC2H5)4 → SiO2 + побочные продукты

Нитрид кремния[править | править вики-текст]

Нитрид кремния часто используют как изолятор и химический барьер при производстве интегральных микросхем. Используют следующие две реакции:

3 SiH4 + 4 NH3 → Si3N4 + 12 H2
3 SiCl2H2 + 4 NH3 → Si3N4 + 6 HCl + 6 H2

Следующие две реакции используют в плазменных процессах для отложения SiNH:

2 SiH4 + N2 → 2 SiNH + 3 H2
SiH4 + NH3 → SiNH + 3 H2

Металлы[править | править вики-текст]

ХОГФ широко используют для нанесения молибдена, тантала, титана, никеля и вольфрама. При нанесении на кремний эти металлы могут формировать полезные силициды. Mo, Ta и Ti производят LPCVD из их пентахлоридов. Ni, Mo, W могут при низких температурах производиться из карбонильных прекурсоров. В целом, для металла M, реакция выглядит так:

2 MCl5 + 5 H2 → 2 M + 10 HCl

Обычно источником вольфрама становится гексафторид вольфрама, который реагирует двумя способами:

WF6 → W + 3 °F2
WF6 + 3 H2 → W + 6 HF

См. также[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]