Асимптота

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Для гиперболы асимптотами являются оси абсцисс и ординат. Кривая может приближаться к своей асимптоте, оставаясь с одной стороны от неё

Аси́мпто́та[1] (от др.-греч. ἀσύμπτωτος — несовпадающий, не касающийся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность[2]. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед[3].

Затухающие колебания. . Кривая может бесконечное множество раз пересекать асимптоту
Пример асимптоты для кривой в пространстве. Спираль бесконечно приближается к прямой

Виды асимптот графиков[править | править вики-текст]

Вертикальная[править | править вики-текст]

Прямая вида является вертикальной асимптотой при выполнении хотя бы одного из равенств:

  1. .

Вертикальных асимптот может быть любое количество.

Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Горизонтальная и наклонная[править | править вики-текст]

На графике функции x+1/x, ось y (x = 0) и линия y=x являются асимптотами.

Наклонная асимптота — прямая вида , если выполняется хотя бы одно из равенств:

  1. .

При этом, если выполняется первое условие, то говорят, что эта прямая является асимптотой при , а если второе, то асимптотой при [4].

Если , то асимптота также называется горизонтальной.

Замечание 1: Число наклонных асимптот у функции не может быть больше двух: одна при и одна при , но она может быть одна или их вовсе может не быть.

Замечание 2: В некоторых источниках говорится, что кривая может пересекать асиптоту лишь конечное число раз, но сейчас такая точка зрения не является общепринятой [5].

Замечание 3: В некоторых случаях, таких как алгебраическая геометрия, асимптота определена, как линия (не обязательно прямая), которая является «касательной» к кривой на бесконечности[5].


Функция y=arctgx с двумя горизонтальными асимптотами

Нахождение асимптот[править | править вики-текст]

Порядок нахождения асимптот[править | править вики-текст]

  1. Нахождение точек разрыва, выбор точек, в которых есть вертикальная асимптота (прямой проверкой, что предел в этой точке есть бесконечность).
  2. Проверка, не являются ли конечными пределы и. Если да, то существует горизонтальная асимптота при и соответственно.
  3. Нахождение двух пределов
  4. Нахождение двух пределов , если хотя бы один из пределов в пункте 3 или 4 не существует (или равен ), то наклонной асимптоты при (или ) не существует.

Наклонная асимптота — выделение целой части[править | править вики-текст]

Нахождение наклонной асимптоты графика функции путём выделения целой части

Также наклонную асимптоту можно найти, выделив целую часть. Например:

Дана функция .

Разделив нацело числитель на знаменатель, получим: .

При , ,

и является искомым уравнением наклонной асимптоты, причем с обеих сторон.

Свойства[править | править вики-текст]

  • Среди конических сечений асимптоты имеют только гиперболы. Асимптоты гиперболы как конического сечения параллельны образующим конуса, лежащим в плоскости, проходящей через вершину конуса параллельно секущей плоскости[6]. Максимальный угол между асимптотами гиперболы для данного конуса равен углу раствора конуса и достигается при секущей плоскости, параллельной оси конуса.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Двойное ударение поставлено согласно Советскому энциклопедическому словарю. В словарях XIX и первой половины XX века (например, в кн.: Словарь иностранных слов / Под ред. И. В. Лёхина и проф. Ф. Н. Петрова. — М.: Гос. изд-во иностр. и нац. словарей, 1955. — С. 77. — 856 с.) указывался единственный вариант ударения «асимпто́та».
  2. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 1.
  3. Математический энциклопедический словарь — М.: Советская энциклопедия, 1988. — 847 с.
  4. Кудрявцев Л. Д. Курс математического анализа. — 5-е изд. — М.: «Дрофа», 2003. — Т. 1. — С. 374-375. — 704 с. — ISBN 5-7107-4119-1.
  5. 1 2 «Asymptotes» by Louis A. Talman
  6. Taylor C. Geometrical Conics; Including Anharmonic Ratio and Projection, With Numerous Examples. — Cambridge: Macmillan, 1863. — С. 170.

Литература[править | править вики-текст]

  • Рашевский П. К. Курс дифференциальной геометрии, 4-е изд. М., 1956.
  • Графики функций: Справочник / Вирченко Н. А., Ляшко И. И., Швецов К. И. — Киев: Наук. думка, 1979, — 320 с.

Ссылки[править | править вики-текст]