Асимптота

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Для гиперболы асимптотами являются оси абсцисс и ординат. Кривая может приближаться к своей асимптоте, оставаясь с одной стороны от неё

Аси́мпто́та[1] (от др.-греч. ἀσύμπτωτος — несовпадающий, не касающийся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность[2]. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед[3].

Затухающие колебания. . Кривая может бесконечное множество раз пересекать асимптоту
Пример асимптоты для кривой в пространстве. Спираль бесконечно приближается к прямой

Виды асимптот графиков[править | править вики-текст]

Вертикальная[править | править вики-текст]

Вертикальная асимптота — прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

Горизонтальная[править | править вики-текст]

Горизонтальная асимптота — прямая вида при условии существования предела

.

Наклонная[править | править вики-текст]

Наклонная асимптота — прямая вида при условии существования пределов

Пример наклонной асимптоты

Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

Связь между наклонной и горизонтальной асимптотами[править | править вики-текст]

Если при вычислении предела , то наклонная асимптота совпадает с горизонтальной.

Горизонтальная асимптота является частным случаем наклонной при , из этого следует что

  1. Функция не может иметь наклонную асимптоту одновременно с горизонтальной при , аналогично для , но также возможен случай, когда асимптот нет.
  2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.
График функции с двумя горизонтальными асимптотами

Нахождение асимптот[править | править вики-текст]

Порядок нахождения асимптот[править | править вики-текст]

  1. Нахождение вертикальных асимптот.
  2. Нахождение двух пределов
  3. Нахождение двух пределов :

если в п. 2), то , и предел находится по формуле горизонтальной асимптоты, .

Наклонная асимптота — выделение целой части[править | править вики-текст]

Нахождение наклонной асимптоты графика функции путём выделения целой части

Также наклонную асимптоту можно найти, выделив целую часть. Например:

Дана функция .

Разделив нацело числитель на знаменатель, получим:

.

При   ,   ,   то есть:

,

и является искомым уравнением асимптоты.

Свойства[править | править вики-текст]

  • Среди конических сечений асимптоты имеют только гиперболы. Асимптоты гиперболы как конического сечения параллельны образующим конуса, лежащим в плоскости, проходящей через вершину конуса параллельно секущей плоскости[4]. Максимальный угол между асимптотами гиперболы для данного конуса равен углу раствора конуса и достигается при секущей плоскости, параллельной оси конуса.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Двойное ударение поставлено согласно Советскому энциклопедическому словарю. В словарях XIX и первой половины XX века (например, в кн.: Словарь иностранных слов / Под ред. И. В. Лёхина и проф. Ф. Н. Петрова. — М.: Гос. изд-во иностр. и нац. словарей, 1955. — С. 77. — 856 с.) указывался единственный вариант ударения «асимпто́та».
  2. Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 1.
  3. Математический энциклопедический словарьМ.: Советская энциклопедия, 1988. — 847 с.
  4. Taylor C. Geometrical Conics; Including Anharmonic Ratio and Projection, With Numerous Examples. — Cambridge: Macmillan, 1863. — С. 170.

Литература[править | править вики-текст]

  • Рашевский П. К. Курс дифференциальной геометрии, 4-е изд. М., 1956.
  • Графики функций: Справочник / Вирченко Н. А., Ляшко И. И., Швецов К. И. — Киев: Наук. думка, 1979, — 320 с.

Ссылки[править | править вики-текст]