Групповое кольцо

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Групповое кольцо — это кольцо, являющееся в то же время свободным модулем, которое можно построить по данному кольцу и данной группе. Неформально говоря, групповое кольцо  — это свободный модуль над кольцом базис которого находится в биективном соответствии с элементами группы умножение базисных элементов определяется как умножение элементов группы, а на остальные элементы умножение «распространяется по линейности».

Аппарат групповых колец особенно полезен в теории представлений групп.

Определение[править | править вики-текст]

Пусть  — кольцо, а  — группа. Тогда групповым кольцом называется множество конечных формальных сумм вида , которые складываются и умножаются следующим образом:

Если , то

.

Свойства[править | править вики-текст]

  • Если и коммутативны, то коммутативно.
  • Если  — кольцо с единицей, то  — кольцо с единицей.
  • Вложение в образует базис группового кольца.
  • Если  — подгруппа , то  — подкольцо кольца .
  • Пусть является полем, тогда каждому элементу можно сопоставить линейное преобразование векторного пространства  — умножение на соответствующий базисный вектор слева. Это сопоставление задаёт регулярное представление группы.

Литература[править | править вики-текст]

  • Б.Л. ван дер Варден. Алгебра. — М.: Наука, 1976.
  • Наймарк М. Теория представлений групп. — М.: Наука, 1976.