Доказательство от противного

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Доказательство «от противного» (лат. contradictio in contrarium) в математике — один из самых часто используемых методов доказательства утверждений. Доказательство от противного — вид доказательства, при котором «доказывание» некоторого суждения (тезиса доказательства) осуществляется через опровержение отрицания этого суждения — антитезиса. Этот способ доказательства основывается на истинности законе двойного отрицания в классической логике.

Схема доказательства[править | править вики-текст]

Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое по закону двойного отрицания равносильно утверждению .

В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.

Пример[править | править вики-текст]

Доказательство иррациональности числа .

Допустим противное: рационален, то есть представляется в виде несократимой дроби , где  — целое число, а  — натуральное. Возведём предполагаемое равенство в квадрат:

, откуда .

Отсюда следует, что чётно, значит, чётно и ; следовательно, делится на 4, а значит, и тоже чётны. Полученное утверждение противоречит несократимости дроби . Значит, исходное предположение было неверным, и  — иррациональное число.

Другие примеры

Врач, убеждая пациента в том, что тот не болен гриппом, может рассуждать следующим образом: «Если бы вы действительно были больны гриппом, то у вас была бы повышена температура, был заложен нос и т. д. Но ничего этого нет. Следовательно, нет и гриппа».

См. также[править | править вики-текст]