Закон исключённого третьего

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Закон исключённого третьего (лат. tertium non datur, то есть «третьего не дано») — закон классической логики, состоящий в том, что из двух высказываний — «А» или «не А» — одно обязательно является истинным, то есть два суждения, одно из которых формулирует отрицание другого, не могут быть одновременно ложными. Закон исключённого третьего является одним из основополагающих принципов «классической математики».

С «интуиционистской» (и, в частности, «конструктивистской») точки зрения, установление истинности высказывания вида «А или не А» означает:

  • либо (а) установление истинности ;
  • либо (б) установление истинности его отрицания .

Поскольку, вообще говоря, не существует общего метода, позволяющего для любого высказывания за конечное число шагов установить его истинность или истинность его отрицания, закон исключённого третьего не должен применяться в рамках интуиционистского и конструктивного направлений в математике как аксиома.

Формулировка[править | править вики-текст]

В математической логике закон исключённого третьего выражается формулой

где:

Другие формулировки[править | править вики-текст]

Подобный смысл имеют другие логические законы, многие из которых сложились исторически. В частности, закон двойного отрицания и закон Пирса эквивалентны закону исключённого третьего. Это означает, что расширение системы аксиом интуиционистской логики любым из этих трёх законов в любом случае приводит к классической логике. И всё же, в общем случае, существуют логики, в которых все три закона неэквивалентны[1].

Примеры[править | править вики-текст]

Предположим, что P представляет собой утверждение «Сократ смертен». Тогда закон исключённого третьего для P примет вид: «Сократ смертен или Сократ бессмертен», откуда ясно, что закон отсекает все иные варианты, при которых Сократ и не смертен и не бессмертен. Последнее — это и есть то самое «третье», которое исключается.

Гораздо более тонкий пример применения закона исключённого третьего, который хорошо демонстрирует, почему он не является приемлемым с точки зрения интуиционизма, состоит в следующем. Предположим, что мы хотим доказать теорему, что существуют иррациональные числа a и b, такие что рационально. Известно, что иррационально. Рассмотрим . Если данное число рационально, то теорема доказана. Иначе возьмём и . Тогда

то есть рациональное число. По закону исключённого третьего иных вариантов быть не может. Поэтому, теорема в общем случае доказана. Причём доказательство предельно просто и элементарно. С другой стороны, если принять интуиционистскую точку зрения и отказаться от закона исключённого третьего, теорема хотя и может быть доказана, но доказательство её становится исключительно сложным.

Примечания[править | править вики-текст]

  1. Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In Thirtieth International Colloquium on Automata, Languages and Programming , ICALP’03, Eindhoven, The Netherlands, June 30 — July 4, 2003, volume 2719 of Lecture Notes in Computer Science, pages 871—885. Springer-Verlag, 2003.[1]

См. также[править | править вики-текст]