Окрестность Мура

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Окрестность Мура порядка 1
Окрестность Мура порядка 2

Окре́стность Му́ра клетки (англ. Moore neighborhood) — совокупность восьми клеток на квадратном паркете, имеющих общую вершину с данной клеткой. Окрестность получила своё название в честь одного из пионеров теории клеточных автоматов Эдварда Мура[1].

Окрестность Мура и окрестность фон Неймана являются наиболее часто используемыми окрестностями в двумерных моделях клеточных автоматов[2][3].

Окрестность Мура используется в известной модели Конвея «Жизнь».

Идея может быть расширена на случай произвольного числа измерений: например, окрестность Мура кубической ячейки в трёхмерном кубическом клеточном автомате состоит из 26 ячеек, имеющих с ней общую вершину.

Окрестность Мура порядка r — множество клеток, расстояние Чебышёва до которых от данной клетки не превышает r. Окрестность Мура порядка r представляет собой квадрат со стороной 2r+1[4].

Алгоритм волновой трассировки при использовании окрестности Мура находит ортогонально-диагональный путь[5].

См. также[править | править исходный текст]

Примечания[править | править исходный текст]