Радиорелейная связь

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Антенны радиореленой связи на телекоммуникационной башне

Радиореле́йная свя́зь — один из видов наземной радиосвязи, основанный на многократной ретрансляции радиосигналов [1]. Радиорелейная связь осуществляется как правило между стационарными объектами.

Исторически радиорелейная связь между станциями осуществлялась с использованием цепочки ретрансляционных станций, которые могли быть как активными, так и пассивными.

Отличительной особенностью радиорелейной связи от всех других видов наземной радиосвязи является использование узконаправленных антенн, а так же дециметровых, сантиметровых или миллиметровых радиоволн.

История[править | править исходный текст]

В 1931 году Андре Клавир, работая во французском исследовательском подразделении LCT компании ITT, показал возможность организации радиосвязи с помощью ультракоротких радиоволн. В ходе предварительных испытаний 31 марта 1931 года Клавир с помощью экспериментальной радиорелейной линии, работающей на частоте 1,67 ГГц, успешно передал и принял телефонные и телеграфные сообщения, разместив две параболические антенны диаметром 3 м на двух противоположных берегах пролива Ла-Манш [2]. Примечательно, что места установки антенн практически совпадали с местами взлета и посадки исторического перелета через Ла-Манш Луи Блерио. Следствием успешного эксперимента Андре Клавира стала дальнейшая разработка коммерческого радиорелейного оборудования. Первое коммерческое радиорелейное оборудование было выпущено ITT, а точнее её дочерней компанией STC, в 1934 году и использовало амплитудную модуляцию несущего колебания мощностью в 0,5 Ватт на частоте 1,724 и 1,764 ГГц, полученного с помощью клистрона.

Запуск первой коммерческой радиорелейной линии состоялся 26 января 1934 года. Линия имела протяжённость 56 км над проливом Ла-Манш и соединяла аэропорты Лимпн в Англии и Сент-Энглевер во Франции. Построенная радиорелейная линия позволяла одновременно передавать один телефонный и один телеграфный канал и использовалась для координации воздушного сообщения между Лондоном и Парижем. В 1940 году в ходе Второй Мировой Войны линия была демонтирована.

Радиорелейная связь прямой видимости[править | править исходный текст]

Радиорелейная линия связи прямой видимости

Как правило под радиорелейной связью понимают именно радиорелейную связь прямой видимости.

При построении радиорелейных линий связи антенны соседних радиорелейных станций располагаются в пределах прямой видимости [1].

Тропосферная радиорелейная связь[править | править исходный текст]

Тропосферная радиорелейная линия связи

При построении тропосферных радиорелейных линий связи используется эффект отражения дециметровых и сантиметровых радиоволн от турбулентных и слоистых неоднородностей в нижних слоях атмосферы — тропосфере [3].

Использование эффекта дальнего тропосферного распространения радиоволн УКВ диапазона позволяет организовать связь на расстояние до 300 км при отсутствии прямой видимости между радиорелейными станциями. Дальность связи может быть увеличена до 450 км при расположении радиорелейных станций на естественных возвышенностях.

Для тропосферной радиорелейной связи характерно сильное ослабление сигнала. Ослабление возникает как при распространении сигнала через атмосферу, так и вследствие рассеяния части сигнала при отражении от тропосферы. Поэтому для устойчивой радиосвязи как правило используют передатчики мощностью до 10 кВт, антенны с большой апертурой (до 30 x 30 м²), а значит, и большим коэффициентом усиления, а также высокочувствительные приёмники с малошумящими элементами.

Так же для тропосферных радиорелейных линий связи характерно постоянное наличие быстрых, медленных и селективных замираний радиосигнала. Уменьшение влияния быстрых замираний на принимаемый сигнал достигается использованием разнесенного частотного и пространственного приема. Поэтому на большинстве тропосферных радиорелейных станций расположено несколько приёмных антенн.

Примером наиболее известных и протяжённых тропосферных радиорелейных линий связи являются:

Радиорелейные ретрансляторы[править | править исходный текст]

В отличие от радиорелейных станций ретрансляторы не добавляют в радиосигнал дополнительной информации. Ретрансляторы могут быть как пассивными, так и активными.

Пассивные ретрансляторы представляют собой простой отражатель радиосигнала без какого-нибудь приёмопередающего оборудования и, в отличие от активных ретрансляторов, не могут усиливать полезный сигнал или переносить его на другую частоту. Пассивные радиорелейные ретрансляторы применяются в случае отсутствия прямой видимости между радиорелейными станциями; активные - для увеличения дальности связи.

В качестве пассивного ретранслятора могут выступать как плоские отражатели, так и антенны радиорелейной связи, соединённые коаксиальными или волноводными вставками (так называемые антенны, соединённые «спина к спине»). Плоские отражатели как правило используются при небольших углах отражения и обладают эффективностью близкой к 100%. Однако с увеличением угла отражения эффективность плоского отражателя уменьшается. Достоинством плоских отражателей является возможность использования для ретрансляции нескольких частотных диапазонов радиорелейной связи.

Антенны, соединённые «спина к спине» как правило используются при углах отражения близких к 180° и обладают эффективностью 50-60%. Подобные отражатели не могут использоваться для ретрансляции нескольких частотных диапазонов из-за ограниченных возможностей самих антенн.

Частотные диапазоны[править | править исходный текст]

Для организации радиосвязи используются деци-, санти- и миллимитровые волны.

Для обеспечения дуплексной связи каждый частотный диапазон условно разделяется на две части относительно центральной частоты диапазона. В каждой части диапазона выделяются частотные каналы заданной полосы. Частотным каналам «нижней» части диапазона соответствуют определённые каналы «верхней» части диапазона, причём таким образом, что разница между центральными частотами каналов из «нижней» и «верхней» частей диапазона была всегда одна и та же для любых частотных каналов одного частотного диапазона.

В соответствии с рекомендацией ITU-R F.746 для радиорелейной связи прямой видимости утверждены следующие диапазоны частот:

Диапазон (ГГц) Границы диапазона (ГГц) Ширина каналов (МГц) Рекомнендации ITU-R Решения ГКРЧ
0,4 0,4061 - 0,430
0,41305 - 0,450
0,05, 0,1, 0,15, 0,2, 0,25, 0,6
0,25, 0,3, 0,5, 0,6, 0,75, 1, 1,75, 3,5
ITU-R F.1567
1,4 1,350 - 1,530 0,25, 0,5, 1, 2, 3,5 ITU-R F.1242
2 1,427 - 2,690 0,5 ITU-R F.701
1,700 - 2,100
1,900 - 2,300
29 ITU-R F.382
1,900 - 2,300 2,5, 3,5, 10, 14 ITU-R F.1098
2,300 - 2,500 1, 2, 4, 14, 28 ITU-R F.746
2,290 - 2,670 0,25, 0,5, 1, 1,75, 2, 2,5 3,5, 7, 14 ITU-R F.1243
3,6 3,400 - 3,800 0,25, 25 ITU-R F.1488
4 3,800 - 4,200
3,700 - 4,200
29
28
ITU-R F.382 Решение ГКРЧ № 09-08-05-1
3,600 - 4,200 10, 30, 40, 60, 80, 90 ITU-R F.635
U4 4,400 - 5,000
4,540 - 4,900
10, 28, 40, 60, 80
20, 40
ITU-R F.1099 Решение ГКРЧ № 09-08-05-2
L6 5,925 - 6,425
5,850 - 6,425
5,925 - 6,425
29,65
90
5, 10, 20, 28, 40, 60
ITU-R F.383 Решение ГКРЧ № 10-07-02
U6 6,425 - 7,110 3,5, 5, 7, 10, 14, 20, 30, 40, 80 ITU-R F.384 Решение ГКРЧ № 12-15-05-2
7 ITU-R F.385
8 ITU-R F.386
10 10,000 - 10,680
10,150 - 10,650
1,25, 3,5, 7, 14, 28
3,5, 7, 14, 28
ITU-R F.747
10,150 - 10,650 28, 30 ITU-R F.1568
10,500 - 10,680
10,550 - 10,680
3,5, 7
1,25, 2,5, 5
ITU-R F.747
11 10,700 - 11,700 5, 7, 10, 14, 20, 28, 40, 60, 80 ITU-R F.387 Решение ГКРЧ № 5/1
12 11,700 - 12,500
12,200 - 12,700
19,18
20
ITU-R F.746
13 12,750 - 13,250 3,5, 7, 14, 28 ITU-R F.497
12,700 - 13,250 12,5, 25 ITU-R F.746
14 14,250 - 14,500 3,5, 7, 14, 28 ITU-R F.746
15 14,400 - 15,350
14,500 - 15,350
3,5, 7, 14, 28, 56
2,5, 5, 10, 20, 30, 40, 50
ITU-R F.636 Решение ГКРЧ № 08-23-09-001
18 17,700 - 19,700
17,700 - 19,700
17,700 - 19,700
18,580 - 19,160
7,5, 13,75, 27,5, 55, 110, 220
1,75, 3,5, 7
2,5, 5, 10, 20, 30, 40, 50
60
ITU-R F.595 Решение ГКРЧ № 07-21-02-001
23 21,200 - 23,600
22,000 - 23,600
2,5, 3,5 - 112
3,5 - 112
ITU-R F.637 Решение ГКРЧ № 06-16-04-001
27 24,250 - 25,250
25,250 - 27,500
25,270 - 26,980
24,500 - 26,500
27,500 - 29,500
2,5, 3,5, 40
2,5, 3,5
60
3,5 - 112
2,5, 3,5 - 112
ITU-R F.748 Решение ГКРЧ № 09-03-04-2
31 31.000 - 31,300 3,5, 7, 14, 25, 28, 50 ITU-R F.746
32 31,800 - 33,400 3,5, 7, 14, 28, 56, 112 ITU-R F.1520
38 36,000 - 40,500
36,000 - 37,000
37,000 - 39,500
38,600 - 39,480
38,600 - 40,000
39,500 - 40,500
2,5, 3,5
3,5 - 112
3,5, 7, 14, 28, 56, 112
60
50
3,5 - 112
ITU-R F.749 Решение ГКРЧ № 06-14-02-001
42 40,500 - 43,500 7, 14, 28, 56, 112 ITU-R F.2005 Решение ГКРЧ № 08-23-04-001
52 51,400 - 52,600 3,5, 7, 14, 28, 56 ITU-R F.1496
57 55,7800 - 57,000
57,000 - 59,000
3,5, 7, 14, 28, 56
50, 100
ITU-R F.1497 Решение ГКРЧ № 06-13-04-001
70/80 71,000 - 76,000 / 81,000 - 86,000 125, N x 250 ITU-R F.2006 Решение ГКРЧ № 10-07-04-1
94 92,000 - 94,000 / 94,100 - 95,000 50, 100, N x 100 ITU-R F.2004 Решение ГКРЧ № 10-07-04-2

Частотные диапазоны от 2 ГГц до 38 ГГц относятся к «классическим» радиорелейным частотным диапазонам. Законы распространения и ослабления радиоволн, а также механизмы появления многолучевого распространения в данных диапазонах хорошо изучены и накоплена большая статистика использования радиорелейных линий связи. Для одного частотного канала «классического» радиорелейного частотного диапазон выделяется полоса частот не более 28 МГц или 56 МГц.

Диапазоны от 38 ГГц до 92 ГГц для радиорелейной связи выделятся недавно и являются более новыми. Несмотря на это данные диапазоны считаются перспективными с точки зрения увеличения пропускной способности радиорелейных линий связи, так как в данных диапазонах возможно выделение более широких частотных каналов.

Модуляция и помехоустойчивое кодирование[править | править исходный текст]

Одними из особенностей использования радиорелейных линий связи является:

  • необходимость передачи больших объёмов информации в сравнительно узкой полосе частот,
  • ограниченная мощность сигнала, накладываемые на радиорелейные станции.

Методы резервирования[править | править исходный текст]

Методы резервирования радиорелейной связи можно разделить

«Горячий» резерв[править | править исходный текст]

Метод «горячего» резерва основывается на введении избыточности в аппаратуру радиорелейных станций. «Горячее» резервирование направлено на повышение надёжности аппаратуры и не может повлиять на характеристики радиосигнала в канале связи.

Частотный разнесённый приём[править | править исходный текст]

Метод частотного разнесенного приёма направлен на устранение частотно-селективых замираний в канале связи.

Пространственный разнесённый приём[править | править исходный текст]

Метод пространственного разнесения применяется для устранения замираний, возникающих в следствие многолучевого распространения радиоволн в канале связи. Метод пространственного разнесения чаще всего используется при строительстве радиорелейных линий связи, проходящими на поверхностями с коэффициентом отражения близким к 1 (водная поверхность, болота, сельскохозяйственные поля).

Поляризационный разнесённый приём[править | править исходный текст]

Одним из недостатков поляризационного разнесённого приема является необходимость использования более дорогостоящих двухполяризационных антенн.

Кольцевые топологии[править | править исходный текст]

Наиболее надёжным методом резервирования является построения радиорелейных линий связи по кольцевой топологии.

Применение радиорелейной связи[править | править исходный текст]

Из всех видов радиосвязи радиорелейная связь обеспечивает наибольшее отношение сигнал/шум на входе приёмника при заданной вероятности ошибки. Именно поэтому при необходимости организации надёжной радиосвязи между двумя объектами чаще всего используются радиорелейные линии связи.

Магистральные радиорелейные линии связи[править | править исходный текст]

Исторически радиорелейные линии связи использовались для организации каналов связи телевизионного и радиовещания, а также для связи телеграфных и телефонных станций на территории со слабо развитой инфраструктурой.

Сети связи нефтепроводов и газопроводов[править | править исходный текст]

Радиорелейные линии связи применяются при строительстве и обслуживании нефте- и газопроводов в качестве линий связи для передачи телеметрической информации. В настоящее время, в некоторых регионах, РРЛ испульзуется как резерв, а основную работу выполняет оптический кабель, проложенный параллельно магистрального трубопровода. В случае порыва оптического кабеля, всю нагрузку на себя берет РРЛ.

Сотовые сети связи[править | править исходный текст]

Радиорелейная связь находит применение в организации каналов связи между различными элементами сотовой сети, особенно в местах со слабо развитой инфраструктурой.

Современные радиорелейные линии связи способны обеспечить передачу больших объёмов информации от базовых станций 2G, 3G и 4G к основным элементам опорной сети сотовой связи.

Недостатки радиорелейной связи[править | править исходный текст]

Ослабление сигнала в свободном пространств[править | править исходный текст]

Ослабление сигнала в дожде и тумане[править | править исходный текст]

На частотах до 12 ГГц осадки в виде дождя или снега слабо влияют на работу радиореленых линий связи.

Рефракция сигнала[править | править исходный текст]

В реальных условиях атмосфера обладает собственным коэффициентом преломления радиоволн, причём атмосфера не является однородной средой, поэтому на разных высотах от поверхности земли коэффициент преломления различен.

Низкая помехозащищенность[править | править исходный текст]

Влияние других радиорелейных станций

Многолучевое распространение[править | править исходный текст]

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

  1. 1 2 ГОСТ 24375-80 Радиосвязь. Термины и определения. Основные понятия.
  2. Saad T.S. The IEEE Transactions on Microwave Theory and Techniques Volume: 20, Issue: 12, Dec. 1972, p. 792 - ISSN 0018-9480
  3. ГОСТ 24375-80 Радиосвязь. Термины и определения. Тропосферная связь.

Литература[править | править исходный текст]

  • Harry R. Anderson Fixed Braadband Wireless System Design - John Wiley & Sons, Inc., 2003 - ISBN 0-470-84438-8
  • Roger L. Freeman Radio System Design for Telecommunications Third Edition - John Wiley & Sons, Inc., 2007 - ISBN 978-0-471-75713-9
  • Ingvar Henne, Per Thorvaldsen Planning of line-of-sight radio relay systems Second edition - Nera, 1999
  • Каменский Н. Н., Модель А. М., под редакцией Бородича С. В. Справочник по радиорелейной связи - Радио и связь, 1981