5G

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

5G (от англ. fifth generation — «пятое поколение») — пятое поколение мобильной связи, действующее на основе стандартов телекоммуникаций (5G/IMT-2020), следующих за существующими стандартами 4G/IMT-Advanced[1]. Телекоммуникационный стандарт связи нового поколения.

Технологии 5G должны обеспечивать более высокую пропускную способность по сравнению с технологиями 4G, что позволит обеспечить бо́льшую доступность широкополосной мобильной связи, а также использование режимов device-to-device (букв. «устройство к устройству», прямое соединение между абонентами), сверхнадёжные масштабные системы коммуникации между устройствами, а также меньшее время задержки, скорость интернета 1—2 Гбит/с, меньший расход энергии батарей, чем у 4G-оборудования, что благоприятно скажется на развитии Интернета вещей (англ. IoT)[2].

В вопросе безопасности научный консенсус заключается в том, что технология 5G безопасна, а аргументы против неё являются конспирологическими и связаны с новизной технологии, которая якобы является достаточной причиной не доверять ей[⇨].

Требования IMT-2020 к кандидату радиоинтерфейса[править | править код]

Следующие параметры являются требованиями для технологий радиодоступа 5G IMT-2020[3]. Обратите внимание, что эти требования не предназначены для ограничения всего спектра возможностей или производительности, которых может достичь кандидат на IMT-2020, и не предназначены для описания того, как технологии могут работать в реальных развертываниях.

Возможность Описание Требования Сценарий использования
Пиковая скорость передачи данных

по нисходящей линии связи

Максимальная достижимая скорость передачи данных при идеальных условиях 20 Гбит/с eMBB
Пиковая скорость передачи данных

по восходящей линии связи

10 Гбит/с eMBB
Пользовательская скорость передачи данных

по нисходящей линии связи

Скорость передачи данных в плотной городской тестовой среде 95 % времени 100 Мбит/с eMBB
Пользовательская скорость передачи данных

по восходящей линии связи

50 Мбит/с eMBB
Задержка Время прохождения пакета в радиосети 4 мс eMBB
1 мс URLLC
Мобильность Максимальная скорость для передачи обслуживания и требований QoS 500 км/ч eMBB/URLLC
Плотность подключений Общее количество подключенных устройств на единицу площади 106/км2 mMTC
Энергоэффективность Данные, отправленные/полученные на единицу энергопотребления (по устройства или сети) Эквивалент 4G eMBB
Пропускная способность Общий трафик в зоне покрытия 10 Mбит/(с·м2) eMBB

Другие требования

  • Качество связи[уточнить]
  • Безопасность для здоровья человека

Технологии 5G[править | править код]

Новые диапазоны радиочастот[править | править код]

Радиоинтерфейс, определённый 3GPP для 5G, известен как New Radio (NR), а спецификация подразделяется на две полосы частот: FR1 (600-6000 МГц) и FR2 (24-100 ГГц)[4], каждая с различными возможностями.

Особенности покрытия FR2[править | править код]

В стандарте 5G предусмотрена работа на частотах 24 ГГц и выше, такой сигнал 5G не способен эффективно работать на расстоянии более нескольких сотен метров между передатчиком и приёмником, в отличие от сигналов 4G или 5G более низкой частоты (до 6 ГГц). В результате базовые станции 5G должны располагаться через каждые несколько сотен метров, чтобы использовать эти высокие частоты. Кроме того, настолько высокочастотные сигналы с большими потерями проникают через твердые объекты, такие как автомобили, деревья и стены. Поэтому для обеспечения высокого качества связи базовые станции 5G могут располагаться внутри зданий, и для этого могут быть спроектированы так, чтобы быть как можно более незаметными, чтобы устанавливать их в таких местах, как рестораны и торговые центры.

Тип ячейки Среда развертывания Макс. количество пользователей Выходная мощность (мВт) Макс. расстояние от станции
5G NR FR2 Femtocell Дома, предприятия Дом: 4-8
Предприятия: 16-32
в помещении: 10-100
на улице: 200—1000
Десятки метров
Pico cell Общественные места, такие как

торговые центры, аэропорты,

вокзалы, небоскребы

от 64 до 128 в помещении: 100—250
на улице: 1000-5000
Десятки метров
Micro cell Городские районы, для заполнения

пробелов в охвате

от 128 до 256 на улице: 5000−10000 несколько сотен метров
Metro cell Городские районы, чтобы обеспечить

дополнительную емкость

более 250 на улице: 10000−20000 сотни метров
Wi-Fi
(для сравнения)
Дома, предприятия менее 50 в помещении: 20-100
на улице: 200—1000
несколько десятков метров

Massive MIMO[править | править код]

Одной из ключевых технологий для реализации сетей сотовой связи 5G является использование в составе базовых станций многоэлементных цифровых антенных решёток[5] с количеством антенных элементов 128, 256 и более[6]. Соответствующие системы получили наименование Massive MIMO[5][6][7].

Формирование луча[править | править код]

Формирование луча (англ. beamforming) используется для направления радиоволн на цель. Это достигается путем объединения элементов в антенной решетке таким образом, что сигналы под определёнными углами испытывают конструктивную интерференцию радиоволн, в то время как другие подвергаются деструктивной интерференции. Синфазное сложение сигналов улучшает отношение сигнал/шум пропорционально количеству антенных элементов, вследствие чего скорость передачи данных может быть повышена. 5G использует формирование луча благодаря улучшенному качеству сигнала, которое он обеспечивает. Формирование луча может быть выполнено с использованием фазированных антенных решеток либо, более эффективно, — без использования фазовращателей с помощью цифровых антенных решёток[8][9].

NOMA (неортогональный множественный доступ)[править | править код]

Для повышения спектральной эффективности, наряду с пространственным мультиплексированием, в 5G могут использоваться разновидности технологий неортогонального множественного доступа (NOMA) и N-OFDM-сигналов.

Малые ячейки[править | править код]

Малые ячейки — это маломощные узлы радиодоступа сотовой связи, которые работают в лицензированном и нелицензированном спектре с диапазоном от 10 метров до нескольких километров. Небольшие ячейки имеют решающее значение для сетей 5G, поскольку радиоволны 5G не могут перемещаться на большие расстояния из-за более высоких частот 5G.

Для реализации системы важно на улице располагать передатчики на высоте выше двухэтажных автобусов. На практике это означает размещение аппаратуры на осветительных столбах, что привело даже к массовым судебным спорам (о цене и праве) в Великобритании[10].

История[править | править код]

В июне 2014 года компания ZTE предложила концепцию технологии Pre-5G[11].

В марте 2015 года на выставке Mobile World Congress в Барселоне ZTE представила базовую станцию Pre-5G Massive MIMO, объединяющую BBU и RRU[11][12].

В июне 2015 года Международный союз электросвязи (МСЭ) разработал план развития технологии и определил её название — «IMT-2020» — Высокоскоростной интернет по технологии 5G[13].

14 июля 2016 года Федеральная комиссия по связи США (FCC) одобрила спектр частот для 5G, включающий диапазоны 28 ГГц, 37 ГГц и 39 ГГц[14][15].

В 2016 году оборудование 5G начало эксплуатировать диапазоны частот 28 ГГц в США и 39 ГГц в Европе, с появлением нового оборудования планировалось задействовать и более высокие частоты, сначала до 60 ГГц, в перспективе — до 300 ГГц[16].

В 2020 году компания Nokia сообщила о достижении рекордной на тот момент скорости беспроводной передачи 4,7 Гбит/сек (приблизительно 590 МБ/сек), используя в своём серийном оборудовании 5G технологию англ. E-UTRA-NR Dual Connectivity (EN-DC) — одновременную работу в 5G и LTE (4G) для параллельной передачи данных[17].

Тестирование[править | править код]

В России первые тесты технологии Pre-5G проведены в июне 2016 оператором связи «МегаФон» совместно с Huawei. В сентябре МТС при тестировании на канале связи с частотой 4,65—4,85 ГГц была достигнута скорость передачи данных 4,5 Гбит/с[18] при полосе 200 МГц.

22 сентября 2016 года «МегаФон» совместно c Nokia на бизнес-саммите в Нижнем Новгороде запустили мобильный Pre-5G-интернет. В ходе испытаний была достигнута скорость передачи данных 4,94 Гбит/с. Через построенную сеть передавался панорамный ролик в разрешении 8К Ultra HD (7680×4320 точек)[19].

1 июня 2017 года «МегаФон» совместно с Huawei показал возможность передачи данных в сетях Pre-5G со скоростью 35 Гбит/с на частоте 70 ГГц[20][аффилированный источник?].

«Telecom Italia Mobile» планировала к концу 2018 года запустить мобильную сеть пятого поколения в Сан-Марино, обновив собственную 4,5G-инфраструктуру. Отдельные элементы сети 5G испытывались в Турине и Милане, но в Сан-Марино у оператора было больше возможностей пользования эфиром из-за меньшей зарегулированности[21][значимость факта?].

В августе 2017 года компания МТС совместно с Nokia подготовила технологическую платформу (МГТС 10G-PON[en]) для подключения базовых станций 5G в Москве[22][значимость факта?].

В 2017 году «Национальный исследовательский институт технологий и связи» (НИИТС) планировал проводить испытания и тестирования сетей 5G на российском оборудовании, занимаясь анализом радиочастотного спектра для стандарта 5G[23][значимость факта?].

28 ноября 2017 года узбекистанский мобильный оператор «Uzmobile» совместно с ZTE на базе лаборатории Центра развития телекоммуникаций и персонала завершил лабораторный тест 5G в Ташкенте[24][аффилированный источник?].

23 января 2020 года компания МТС в Минске (Белоруссия) запустила пилотные зоны 5G-сети NSA[уточнить] на частотах в диапазоне 3600—3700 МГц, которые работают на инфраструктуре оператора с использованием оборудования Huawei и Cisco[25]. 28 мая 2020 года инфраструктурный[уточнить] оператор beCloud в тестовом режиме запустил сеть 5G NSA. Опытная зона развернута в Минске в диапазонах 3500 МГц и 2600 МГц и состоит из двадцати базовых станций[26]. 22 мая 2020 года компании А1 и МТС запустили в тестовом режиме собственные автономные сети 5G SA (standalone[уточнить])[27]. Тестовая 5G-сеть от А1 запущена на Октябрьской площади в Минске в партнерстве с ZTE и работает в диапазоне 3,5 ГГц. Пилотная зона МТС развернута в двух диапазонах — 1800 МГц и 3500 МГц в комплексе «Минск-арена». 25 мая компания А1 совершила первый в СНГ звонок с помощью технологии VoNR (Voice over New Radio) для пакетной передачи голоса в 5G[28][значимость факта?].

Первые коммерческие сети 5G[править | править код]

1 октября 2018 года компания Verizon запустила сеть 5G в четырёх городах США (Хьюстоне, Индианаполисе, Лос-Анджелесе и Сакраменто)[29][30].

5 апреля 2019 года Южная Корея стала первой страной в Азии, запустившей коммерческие услуги пятого поколения 5G[31]. Стандарт сначала появился в крупнейших городах, в частности, в Сеуле.

С 17 апреля 2019 года связь 5G работает в 54 городах Швейцарии[32].

23 апреля 2019 года было объявлено, что компания China Unicom запустила пилотную сеть связи 5G в семи городах Китая[33].

30 мая 2019 года BT Group запустил сеть 5G в Великобритании[34].

6 июня 2019 года Италия стала третьей страной в Европе, где запустили 5G. Оператором выступила компания Vodafone[35].

14 июня Vodafone и Huawei запустили сеть 5G в Испании[36].

3 июля 2019 года технология 5G была запущена в Германии (в городах Бонне и Берлине)[37].

31 октября 2019 года сеть 5G охватила 50 городов Китая, сделав страну лидером по внедрению этой технологии[38].

В России[править | править код]

Развертывание сетей пятого поколения в России сталкивается с серьёзными препятствиями (в стране пока нет собственного оборудования для них; операторам не готовы выделить самые подходящие для 5G-частоты, потому что они заняты силовиками; из-за строгих санитарных норм развёртывание сетей может оказаться в несколько раз дороже, чем в целом по миру и т. д.).[39]

В конце апреля 2019 года заместитель председателя правительства РФ Максим Акимов сообщил, что основная часть работ по расчистке частотного спектра под сети связи 5G будет завершена через 2—2,5 года, добавив, что в этот же период в некоторых городах также может начаться внедрение этого формата связи[40]; создание сетей 5G он оценил в 650 млрд рублей.[41]. 5 июня 2019 года МТС и Huawei подписали соглашение о развитии 5G в России, торжественная церемония подписания прошла в присутствии Владимира Путина и Си Цзиньпина[42]. В начале августа в Москве на Тверской улице (от Кремля до Садового кольца) компании Tele2 и Ericsson запустили пробную зону сети связи 5G на частоте 28 ГГц в режиме NSA (non-standalone), который позволяет развернуть 5G в сетях LTE и упрощает внедрение стандарта на начальном этапе[43]; к октябрю пробные зоны 5G работают также на территориях ВДНХ и спортивного комплекса «Лужники»[44].

В середине августа 2019 президент РФ Владимир Путин наложил резолюцию «Согласен» на письмо Совета безопасности с отрицательной позицией по выделению частот 3,4—3,8 ГГц для использования 5G в России[45].

В сентябре 2019 в Сколковском институте науки и технологий запустили первую базовую станцию 5G, которая работает в диапазоне 4,8—4,99 ГГц, в соответствии с разрешением на использование частот, которое было выдано Государственной комиссией по радиочастотам для создания пилотной зоны сетей связи 5G; на 5G-смартфонах Huawei Mate 20X удалось достичь скорости более 300 Мбит/с.[46]. В октябре Tele2 запустила игровой сервис в сети 5G, с помощью которого геймеры могут играть на маломощных компьютерах, запуская игры на удалённом сервере; во время испытаний технологии была достигнута скорость передачи данных свыше 1 Гбит/c с задержкой до 5 мс[47].

28 июля 2020 года МТС получил лицензию на оказание услуг мобильной связи стандарта 5G в диапазоне 24,25-24,65 ГГц в 83 регионах страны[48].

В ноябре 2020 года Правительственная комиссия по цифровому развитию наметила план мероприятий по развитию мобильных сетей связи пятого поколения (5G) в России. Реализация основной части, связанной с внедрением нового российского оборудования и развертыванием 5G на территории страны, планируется в 2021—2024 годах. Ранее о готовности провести испытания для определения возможности развертывания сетей 5G заявляли Научно-исследовательский институт радио и Министерство обороны РФ[49].

Спустя месяц Федеральная антимонопольная служба (ФАС) России одобрила создание операторами связи совместного предприятия по расчистке частот для 5G. Операторам связи, участвующим в сделке, необходимо разработать и согласовать с антимонопольным органом условия использования инфраструктуры и совместного использования радиочастот и условий предоставления инфраструктуры для виртуальных мобильных операторов (MVNO). При этом участникам предписано сохранить недискриминационный доступ к радиочастотам для всех представителей рынка подвижной радиотелефонной связи[50].

Аппаратное обеспечение[править | править код]

В конце 2018 года Intel представила модем XMM 8160 с поддержкой мобильных сетей пятого поколения наряду с 5G-модемами от Qualcomm X50, Huawei Balong 5000 и MediaTek Helio M70.

Samsung Exynos Modem 5100, представленный в августе 2018 года, является первым в мире модемом 5G, полностью соответствующим спецификациям стандарта 3GPP Release 15 (Rel.15) для мобильных сетей 5G New Radio (5G-NR).

Воздействие на человека[править | править код]

Научный консенсус заключается в том, что технология 5G безопасна, а аргументы против неё являются конспирологическими и связаны с новизной технологии, которая якобы является достаточной причиной не доверять ей[51][52][53][54]. Непонимание технологии 5G породило теории заговора, утверждающие, что она оказывает неблагоприятное воздействие на здоровье человека[55].

Развёртывание мобильных сетей пятого поколения (5G) вызывает обеспокоенность общественности в связи с возможными негативными последствиями для здоровья человека[56].

В 2018 году появились слухи о возможном негативном влиянии мобильных сетей 5G на здоровье человека из-за увеличения воздействия радиочастотных электромагнитных полей, способных повреждать клеточные мембраны[источник не указан 501 день].

На 2019 год существуют мнения, что электромагнитные поля повышают риск рака, создают клеточный стресс, увеличивают число вредных свободных радикалов, вызывают повреждения генов, структурные и функциональные изменения репродуктивной системы, дают эффект снижения способности к обучению и ухудшение памяти, вызывают неврологические расстройства и оказывают общее негативное влияние на благополучие людей. Также высказывались свидетельства вредного воздействия также на других животных и на растения. 240 учёных подписали открытое письмо «International EMF Scientist Appeal», адресованное ООН, ВОЗ и ЮНЕП. Исходя из этого, некоторые люди утверждают, что влияние излучения оборудования 5G не изучено и это излучение может быть опасным для здоровья людей[57].

В апреле 2019 года в швейцарском кантоне Женева была предпринята попытка введения моратория на использование стандарта 5G в мобильной связи[58]. Позже стало известно, что у представителей кантона нет полномочий на введение такого моратория[59].

Некоторые люди говорят о своей так называемой «электромагнитной гиперчувствительности», однако в контролируемых экспериментах они никак не ощущали присутствие электромагнитного поля и радиочастотного облучения своего тела[60].

На 2014 год не обнаружено никаких неблагоприятных последствий для здоровья человека от излучения мобильных телефонов. Единственное обнаруженное влияние их радиочастотного излучения — незначительный нагрев кожи и прилегающих тканей и вызванное этим кратковременное незначительное повышение температуры тела[60].

На 2021 год также нет никаких доказательств вреда от высокочастотного электромагнитного излучения низкой мощности, которое используется в аппаратуре 5G. Более того, излучение частотой 6 ГГц и выше не способно проникнуть вглубь тела, единственный обнаруженный эффект — слабый нагрев кожного покрова[56][61]. Исследователи проверяли гипотезы о генотоксичности излучения, его влиянии на пролиферацию клеток, экспрессию генов, передачу нервных импульсов, влияние на проницаемость клеточных мембран и другие. Также проведены эпидемиологические исследования с целью выявить связь излучения 5G на здоровье населения. Во всех исследованиях с высокой достоверностью никакое влияние излучения 5G на организм и на здоровье населения не обнаружено[56].

Единственный вред от использования мобильных телефонов заключается в том, что водители автомобилей, разговаривая по телефону, перестают следить за дорожной обстановкой, совершают дорожно-транспортные происшествия и получают травмы. Риск автомобильной аварии повышен не только при разговоре по поднесённому к уху телефонному аппарату, но и при разговоре по громкой связи. Риск аварии не зависит от используемых телефоном радиочастот[60].

Конспирология и борьба с 5G-вышками[править | править код]

Некоторые печатные СМИ сообщили об имевших место поджогах семи вышек 5G в Великобритании весной 2020 года в связи с теорией заговора о связи новой технологии с пандемией COVID-19. Facebook заявил о намерении блокировать распространение подобной информации[62]. 11 апреля 2020 года одиночные случаи поджогов вышек сотовой связи 5G выявили и в Нидерландах[63].

См. также[править | править код]

Примечания[править | править код]

  1. ITU towards “IMT for 2020 and beyond” - IMT-2020 standards for 5G (англ.). International Telecommunications Union. Дата обращения: 22 февраля 2017.
  2. Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H. Scenarios for 5G mobile and wireless communications: the vision of the METIS project (англ.) // IEEE Communications Magazine  (англ.) : magazine. — 2014. — 1 May (vol. 52, no. 5). — P. 26—35. — ISSN 0163-6804. — doi:10.1109/MCOM.2014.6815890.
  3. Minimum requirements related to technical performancefor IMT-2020 radiointerface(s) (англ.). ITU (2017). Дата обращения: 25 мая 2020.
  4. ETSI, 3GPP. ETSI TS 138 101-1 V15.9.0 (англ.). — 2020.
  5. 1 2 Слюсар В. И. Развитие схемотехники ЦАР: некоторые итоги. Часть 1.// Первая миля. Last mile (Приложение к журналу «Электроника: наука, технология, бизнес»). — N1. — 2018. — C. 72 — 77 [1]
  6. 1 2 Слюсар В. И. Развитие схемотехники ЦАР: некоторые итоги. Часть 2.// Первая миля. Last mile (Приложение к журналу «Электроника: наука, технология, бизнес»). — N2. — 2018. — C. 76 — 80.[2]
  7. Степанец И., Фокин Г. Особенности реализации Massive MIMO в сетях 5G // Первая миля. Last mile (Приложение к журналу «Электроника: наука, технология, бизнес»). — N1. — 2018. — C. 46 — 52.
  8. Слюсар, В.И. SMART-антенны. Цифровые антенные решётки (ЦАР). MIMO–системы на базе ЦАР.. Разделы 9.5 - 9.8 в книге «Широкополосные беспроводные сети передачи информации». / Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. – М.: Техносфера. – 2005. C. 498 – 569 (2005).
  9. Слюсар, В.И. Smart-антенны пошли в серию.. Электроника: наука, технология, бизнес. – 2004. - № 2. C. 62 – 65 (2004).
  10. Revealed: 5G rollout is being stalled by rows over lampposts
  11. 1 2 ZTE и U Mobile объявили о партнерстве с целью проведения исследований в области мобильных сетей 5G в Малайзии : пресс-релиз : [арх. 13 августа 2015] // Интерфакс. — 2015. — 11 августа.
  12. ZTE Releases Pre5G Pre-commercial Base Station : press release : [англ.] : [арх. 14 декабря 2015] // Business Wire. — 2015. — 1 March.
  13. «Первые сети 5G появятся в России в 2018 году» : Топ-менеджер «Мегафона» — о фантастических возможностях скоростного интернета : [арх. 6 августа 2020] // Lenta.ru. — 2016. — 10 октября.
  14. FCC Approves Spectrum for 5G Advances, USA Today (14 июля 2016). Дата обращения 25 июля 2016.
  15. Leading Towards Next Generation "5G" Mobile Services, Federal Communications Commission. Дата обращения 25 июля 2016.
  16. LaPedus, M. Waiting For 5G Technology Waiting For 5G Technology : New wireless standard will significantly speed up communication, but dealing with mmWave technology isn’t going to be simple : [англ.] : [арх. 27 июня 2016] // Semiconductor Engineering. — 2016. — 23 June.
  17. Фетисов, В. Nokia показала рекордную скорость передачи данных в сети 5G : [арх. 1 ноября 2020] // 3D News. — 2020. — 19 мая.
  18. МТС протестировал технологию 5G со скоростью 4,5 Гбит/с
  19. «Мегафон» запустил 5G на скорости 5 Гбит/с. CNews.ru. Дата обращения: 17 октября 2021.
  20. Григорий Матюхин. «МегаФон» и Huawei поставили в Питере рекорд скорости 5G. hi-tech.mail.ru (1 июня 2017). Дата обращения: 23 апреля 2020.
  21. Сан-Марино первой из стран перейдет на 5G // Интерфакс
  22. На рынке участились 5G
  23. Отечественное оборудование готовят к 5G // Коммерсантъ № 193 (6187) от 17.10.2017
  24. UZMOBILE уже тестирует 5G (недоступная ссылка). uzmobile.uz. Дата обращения: 9 января 2018. Архивировано 10 января 2018 года.
  25. МТС запустил пилотные зоны 5G в Минске (недоступная ссылка). TUT.BY. Дата обращения: 17 июня 2020. Архивировано 28 октября 2020 года.
  26. beCloud запустил в тестовом режиме сеть 5G с максимальной для Беларуси скоростью. dev.by. Дата обращения: 17 июня 2020.
  27. A1 показал Onliner, как тестирует в своей сети «чистый» 5G. И МТС тоже. onliner.by. Дата обращения: 17 июня 2020.
  28. A1 совершил первый 5G-звонок в СНГ (недоступная ссылка). TUT.BY. Дата обращения: 26 мая 2020. Архивировано 1 ноября 2020 года.
  29. Вчера в Хьюстоне, Индианаполисе, Лос-Анджелесе и Сакраменто запустили первую в мире сеть 5G // Популярная механика, 2 октября 2018
  30. Verizon запустил первую в мире коммерческую сеть 5G — но ещё не в Нью-Йорке // brightonbeachnews.com — Новости Русского Нью-Йорка, 2 окт 2018
  31. В конце недели Южная Корея запустит 5G-сервисы, опередив США и Китай. 3dnews.ru (3 апреля 2019). Дата обращения: 3 апреля 2019.
  32. Swisscom flips the switch: Switzerland’s first 5G network is live | Swisscom (англ.). www.swisscom.ch. Дата обращения: 23 апреля 2020.
  33. В семи китайских городах запустили пилотную сеть связи 5G.
  34. В Великобритании EE включил первую в стране сеть 5G, а в США пользователи уже делятся результатами тестов
  35. Италия стала третьей в Европе, где запустили 5G // 3dnews.ru, 06.06.2019
  36. Vodafone и Huawei запускают сеть 5G в Испании
  37. В Германии запущена сеть высокоскоростной мобильной связи 5G // Немецкая волна, 04.07.2020
  38. В Китае внезапно запустили 5G по всей стране // 4PDA. 1.11.2019
  39. Вне зоны доступа. 5G в России под угрозой. Почему развернуть сети в стране оказалось так сложно и дорого? // Лента. Ру, 21 ноября 2020
  40. Основная работа по расчистке частот под 5G будет завершена через 2–2,5 года. Коммерсантъ (30 апреля 2019). Дата обращения: 29 апреля 2019.
  41. Создание в России сетей 5G потребует около 650 миллиардов рублей инвестиций. РИА Новости (20190419T1420+0300Z). Дата обращения: 18 мая 2019.
  42. МТС и Huawei подписали соглашение о развитии 5G в России
  43. Ридус. Tele2 и Ericsson запустили 5G в центре Москвы. Ридус. Дата обращения: 11 октября 2019.
  44. Москва и Ericsson договорились о развитии 5G в столице. www.comnews.ru. Дата обращения: 11 октября 2019.
  45. Путин не отдает операторам популярные частоты для 5G. Он согласился оставить их у военных // Ведомости, 15 августа 2019
  46. В "Сколтехе" запустили первую базовую станцию 5G. РИА Новости (20190912T1606+0300Z). Дата обращения: 25 октября 2019.
  47. Tele2 запускает облачные игры на 5G // comnews.ru, 9 октября 2019
  48. Евгений Калюков, Анна Балашова. МТС первой в России получила лицензию на создание сети 5G, РБК (28 июля). Дата обращения 6 августа 2020.
  49. Евгения Чукалина. Правительственная комиссия одобрила дорожную карту развития 5G в России. Известия (19 ноября 2020). Дата обращения: 30 января 2021.
  50. Анна Соколова. ФАС одобрила создание операторами связи совместного предприятия по 5G. Известия (24 декабря 2020). Дата обращения: 30 января 2021.
  51. Novella, Steve 5G Is Coming. Science-Based Medicine (May 15, 2019).
  52. 5G confirmed safe by radiation watchdog, The Guardian (March 12, 2020). Дата обращения 10 мая 2020.
  53. 5G judged safe by scientists but faces tougher radiation rules, BBC News (March 11, 2020). Дата обращения 10 мая 2020.
  54. Bowler, Jacinta What's 5G, And Why Are People So Scared of It? Here's What You Need to Know (англ.). ScienceAlert. Дата обращения: 7 июня 2020.
  55. Hern, Alex. How baseless fears over 5G rollout created a health scare, The Guardian (July 26, 2019).
  56. 1 2 3 Wood, A. Meta-analysis of in vitro and in vivo studies of the biological effects of low-level millimetre waves : [англ.] / A. Wood, R. Mate, K. Karipidis // Journal of Exposure Science and Environmental Epidemiolology. — 2021. — 16 March. — P. 1–8. — doi:10.1038/s41370-021-00307-7. — PMID 33727686. — PMC 7962924.
  57. Moskowitz, J. M. We Have No Reason to Believe 5G Is Safe : The technology is coming, but contrary to what some people say, there could be health risks : [англ.] : [арх. 21 апреля 2021] // Scientific American Blogs. — 2019. — 17 October.
  58. Aktuell. www.aefu.ch. Дата обращения: 10 мая 2019.
  59. S. W. I. swissinfo.ch, a branch of the Swiss Broadcasting Corporation. Swiss cantons lack clout to ban 5G mobile network (англ.). SWI swissinfo.ch. Дата обращения: 9 июня 2019.
  60. 1 2 3 Электромагнитные поля и общественное здравоохранение: мобильные телефоны : [арх. 30 октября 0202]. — Всемирная организация здравоохранения, 2014. — 8 октября.
  61. Karipidis, K. 5G mobile networks and health—a state-of-the-science review of the research into low-level RF fields above 6 GHz : [англ.] / K. Karipidis, R. Mate, D. Urban … [et al.] // Journal of Exposure Science & Environmental Epidemiology. — 2021. — 16 March. — doi:10.1038/s41370-021-00297-6. — PMID 33727687.
  62. В Великобритании жгут вышки 5G из-за их якобы связи с распространением коронавируса // Коммерсантъ, 07.04.2020
  63. В Нидерландах подожгли несколько вышек 5G // REGNUM. 11 апреля 2020

Ссылки[править | править код]