Сшитый пенополиэтилен (полиэтилен)

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Сшитый полиэтилен»)
Перейти к навигации Перейти к поиску

Сшивка' — процесс образования дополнительных химических связей между макромолекулами основного полимера.

Рулон физически сшитого пенополиэтилена

Сшитый пенополиэтилен (сшитая пена) — вспененный полиэтилен, молекулярная структура которого модифицируется в результате сшивки.

Во вспененном виде, поперечно-связанная молекулярная структура сшитого полиэтилена обладает высокой прочностью и плотностью, низкой теплопроводностью, низким влагопоглощением, длительным сроком эксплуатации, высокой стойкостью к химическим воздействиям и хорошими показателями поглощения ударного шума. Сшитый пенополиэтилен отличается сложной технологией производства, экологической безопасностью и приятным внешним видом. Молекулы сшиваются за счёт химических веществ введённых в полимер или за счёт облучения пучком электронов, поэтому различают химически и физически (радиационно) сшитый полиэтилен.

Пример исполнения трубы из сшитого полиэтилена

Сшитый полиэтилен (PE-X или XLPE, ПЭ-С) — полимер этилена с поперечно сшитыми молекулами (PE — PolyEthylene, X — Cross-linked).

При сшивке в молекулярных цепочках, содержащих атомы углерода и водорода, под воздействием определённых факторов (повышенная температура, кислород, облучение электронами высокой энергии), отрываются отдельные атомы водорода. Образовавшаяся свободная связь используется для соединения отдельных цепочек между собой.

Технология производства[править | править код]

Технология производства пенополиэтилена сшитого химически:

На фото изображён химически сшитый пенополиэтилен

1) Смешение и гомогенизация компонентов, основными из которых являются полиэтилен низкой плотности (LDPE). В состав также входят вспениватель, катализаторы вспенивания, стабилизаторы и другие добавки.

Физически сшитый пенополиэтилен


2) Нагрев матрикса, вследствие чего происходит сшивка с одновременным вспениванием материала.

Химически сшитый пенополиэтилен эластичен, имеет мелко пористую структуру (размер пор <1 мм). Пора закрытая (в отличие от поролона) поверхность со значительной шероховатостью.


Технология производства пенополиэтилена сшитого физически: 1) Смешение и гомогенизация компонентов, основными из которых являются полиэтилен низкой плотности (LDPE). В состав также входят вспениватель, катализаторы вспенивания, стабилизаторы и другие добавки;

2) Облучение экструдированного листа быстрыми электронами, которые генерируются ускорителем, содержащим эмиттер электронов и систему их разгона до требуемых уровней энергии;

3) Вспенивание облучённого экструдированного листа в специальной печи вспенивания, содержащей ряд функциональных зон и несколько типов источников нагрева — получение собственно физически сшитого пенополиэтилена.

Физически сшитый пенополиэтилен эластичен, имеет микропористую структуру. Пора закрытая. Поверхность гладкая.


Технологии производства сшитого полиэтилена PE-X для труб:

1) Пероксидная (нагрев в присутствии пероксидов), при которой получают материал с обозначением PEX-A. Трубы PEX-A обладают лучшими характеристиками устойчивости к нагрузкам среди всех разновидностей. Сшивание пероксидом позволяет скрепить до 90% макромолекул. При разматывании бухты они быстро выпрямляются и хорошо держат форму. На изгибах (в пределах допустимых норм и соблюдении технологии) не заламываются;

2) Силановая (обработка влагой, в которую предварительно был имплантирован силан + катализатор), при которой получают материал с обозначением PEX-B. Сшивка силаном даёт около 80% скрепления молекул исходного полимера. Производственный процесс проходит в два этапа. На первом полимер насыщается силаном, на втором – насыщается дополнительной водой (гидратируется). Трубы не уступают по прочности пероксидным, но менее эластичны и хуже восстанавливают первоначальную форму;

3) Электронная (бомбардировка электронами), при которой получают материал PEX-C. Здесь применяется радиоактивное излучение для сшивки полимеров, выход поперечных связей в готовом материале составляет около 60% от общего числа возможных. В процессе материал бомбардируется электронами. Выходные характеристики материала зависят от пространственной ориентации при производстве. Трубы получаются не слишком гибкими, склонными к заломам. Заломы устранить можно только с помощью соединительной муфты;

4) Азотная, при которой получают материал с обозначением PEX-D. Полезный выход здесь около 70%, что больше, чем у PEX-C. Однако эта технология самая сложная в практической реализации и производители от её использования постепенно отказываются

Преимущества сшивки[править | править код]

За счёт сшивки молекул вспененного полиэтилена улучшаются следующие параметры:

— теплостойкость (рабочий температурный интервал сшитых пенополиэтиленов, как правило, на 20-30 °C выше не сшитых);

— физико-механические показатели (разрушающее напряжение при растяжении, предел прочности при сжатии, относительная остаточная деформация при сжатии, динамическая жесткость) при равной плотности и толщине могут быть лучше на 5-15%;

— возможность использования сшитого пенополиэтилена при кратковременных точечных нагрузках (5-20 кг/см2 (50-200 тонн/м2), использование «несшитого» пенополиэтилена в данном случае не желательно, так как ячейки могут необратимо деформироваться (лопаться));

— стойкость к ультрафиолету и атмосферостойкость;

— стабильность геометрических размеров;

За счёт сшивки молекул полиэтилена увеличиваются параметры:

- температуры плавления. Сшитый полимер размягчается при повышении температуры более 150 °C, плавится при 200 °C;

- Увеличенная жёсткость и прочность на разрыв;

- Пароизоляции;

- Восстановления формы после кратковременной деформации

  • Показатели качества:
Показатель Сшитый

полиэтилен

ПЭВД

(LDPE)

Пенополиетилен Пенополиэтилен

не сшитый

Доля сшивки. % 60-90 <3 не определяется1 не определяется1
Плотность, кг/м3 940-960 900-930 25-200 17-40
Температура размягчения, °С 130-140 100 нет данных 100
Максимальная рабочая температура, °С 90-95 - 95 85
Удлинение при разрыве, % 350-500 100-800 100-160 100-200
Напряжение на разрыв, МПа

В продольном направлении

В поперечном направлении

20-25


7-17 >0,25

>0,2

~0,36

~0,17

Коэффициент теплопроводности ʎ25, Вт/мК 0,35-0,4 0,20-0,36 0,039-0,05 0,039-0,045
Модуль упругости на изгиб, МПа 600-900 118-225 - -
Динамический модуль упругости, МПа - - 0,14-1,80 0,12-0,93
Относительное сжатие при 2000 Па, % - - 0,01-0,1 0,02-0,1
Остаточная деформация, %

(после 25% линейной деформации)

- - <7 3-6
Срок службы2, лет 3-50 - 50 50

Примечания:

  1. Стандартизированная методика ГОСТ Р 57748-2017, не пригодна для определения доли сшивки вспененных материалов.
  2. Срок службы для труб нормирует ГОСТ Р 57748-2017. Сроки службы сильно сокращаются при высокой температуре теплоносителя, так при температуре до 70 °С срок службы труб 25 лет и более. При температуре 95 °С срок службы сокращается до 2-3 лет. Срок службы пенополиэтиленов определен по ГОСТ ISO 188-2003. Эта методика даёт не релевантные результаты для полимерных материалов, чей срок службы отличается от срока хранения.
Физически сшитый пенополиэтилен с клеевым слоем, в форме ролика
Пример изделия из физически сшитого пенополиэтилена. Туристические ковры.

Области применения сшитого пенополиэтилена[править | править код]

Пример изделий из сшитого полиэтилена - водяной тёплый пол.

— строительно-ремонтная отрасль (теплоизоляция; снижение ударного шума в конструкциях плавающих полов и ступеней, а также в качестве подложки под паркет, доску-ламинат и различные напольные покрытия; звукоизоляция; гидроизоляция);

— автомобилестроение (формирование интерьера автомобиля, панелей приборов, дверных карт; тепло- , шумоизоляция, формирование воздуховодов и другое);

— медицина (изготовление пластырей, бандажа, применение в ортопедической обуви);

— обувная промышленность (формование стелек, запятников, мягких вставок);

— спорт, отдых, туризм (применение в виде ковров, матов, плавательных досок, спасательных средств и т. д.);

— авиа и вертолетостроение (теплоизоляция);

— армия, спецподразделения (ковры хаки).

Области применения сшитого полиэтилена[править | править код]

Сшитый полиэтилен обладает уникальными свойствами по прочности и стойкости к различным разрушающим явлениям, включая высокую температуру.

- Изготовление напорных труб для холодного и горячего водоснабжения;

- Изготовление систем отопления;

- Изготовление изоляции кабелей высокого напряжения;

- Изготовление специальных строительных материалов и как элемент конструкционного назначения.

Литература[править | править код]

  • ГОСТ Р 57748-2017 «Композиты полимерные. Метод определения параметров полимерной сетки сшитого сверхвысокомолекулярного полиэтилена в растворителе»
  • ГОСТ 32415-2013 «Трубы напорные из термопластов и соединительные детали к ним для систем водоснабжения и отопления. Общие технические условия»
  • В. К. Князев, Н. А. Сидоров. Облучённый полиэтилен в технике. М., «Химия», 1974, 376 с.
  • Князев В. К., Сидоров Н. А. Применение облучённого полиэтилена в радиоэлектронике. М., «Энергия», 1972. 64 с.
  • Прижижецкий С. И., Самсоненко А. В. «Новый стандарт проектирования тепловой изоляции оборудования и трубопроводов.», Промышленное и Гражданское Строительство 12/2008, Издательство «ПГС», ISSN 0869-7019
  • Батраков А. Н., Амплеева И. А., «Сшитые и несшитые пены, их сходство и различие», Промышленное и Гражданское Строительство 9/2005, Издательство «ПГС», ISSN 0869-7019
  • А. И. Ларионов, Г. Н. Матюхина, К. А. Чернова, «Пенополиэтилен, его свойства и применение», Ленинградский дом научно-технической пропаганды, г. Ленинград, 1973 г.
  • И. В. Кулешов, Р. В. Торнер, «Теплоизоляция из вспененных полимеров», Москва Стройиздат 1987 г.
  • Берлин А. А. Основы производства газонаполненных пластмасс и эластомеров. М" Гюсхимиздат, 1954.
  • Воробьёв В. А, Андрианов Р А, Федосеев Г П Полимерные теплоизоляционные материалы в строительстве М., ВЗСТ, МВнССО РСФСР, 1964

Ссылки[править | править код]