Унитарное пространство

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Унитарное пространство — векторное пространство над полем комплексных чисел с эрмитовым скалярным произведением.

Эрмитовым скалярным произведением в линейном пространстве над полем комплексных чисел называется функция удовлетворяющая следующим условиям:

  • 1) (линейность скалярного произведения по первому аргументу)
и справедливы равенства:

(иногда в определении вместо этого берут линейность по второму аргументу, что не принципиально)

  • 2) (эрмитовость скалярного произведения)
справедливо равенство ,
  • 3) (положительная определенность скалярного произведения)
имеем причем только при .

Другими словами, скалярным произведением называется положительно определенная эрмитова форма .

Отметим, что над действительным пространством условие полуторалинейности эквивалентно билинейности, а эрмитовость — симметричности, и скалярное произведение становится положительно определенной билинейной симметричной функцией .