GFAJ-1

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Halomonas sp. GFAJ-1
GFAJ-1 (grown on arsenic).jpg
Штамм GFAJ-1, выращенный на мышьяке
Научная классификация
Международное научное название

Halomonas sp. GFAJ-1

Halomonas sp. GFAJ-1, или штамм GFAJ-1 — палочковидные экстремофильные бактерии, относятся к гамма-протеобактериям. Найдены учёными НАСА в озере Моно, штат Калифорния (США). Бактерии примечательны своей способностью выживать при очень высоких концентрациях мышьяка. При открытии штамма GFAJ-1 было объявлено, что этот организм встраивает в свою ДНК мышьяк вместо фосфора, являясь таким образом единственной формой жизни на основе мышьяка; это свойство GFAJ-1 не нашло подтверждения.

Научная дискуссия, развернувшаяся после сообщения об открытии продемонстрировала способность научного сообщества исправлять ошибки и артефакты исследований; история открытия GFAJ-1 стала примером зарождения и развенчания научной ошибки, в соответствии с принципом фальсифицируемости.

Интерес биологов к этой бактерии, возможно, останется, поскольку она отличается исключительной способностью выживать в присутствии ядовитого мышьяка даже после того, как он проник внутрь клетки.

Открытие[править | править код]

Фелиса Вольф-Саймон
Предложенная структура ДНК бактерии

Микроорганизм GFAJ-1 был обнаружен геомикробиологом Фелисой Вулф-Саймон[en] из Астробиологического института НАСА в Менло-Парке, Калифорния. Организм был выделен в чистую культуру в начале 2009 года из отложений, которые исследовательница и её коллеги собрали вдоль берега озера Моно. Это гиперсалинное и очень щелочное озеро, в котором имеется одна из самых высоких естественных концентраций мышьяка в мире (200 мкM/л). Об открытии было широко сообщено 2 декабря 2010.

Учёными было выдвинуто предположение, что эти микроорганизмы в условиях нехватки фосфора способны жить и размножаться, замещая фосфор в составе ДНК на токсичный для других форм жизни мышьяк.[1][2][3] По словам Вольф-Саймон: «Мы знали, что некоторые микробы могут дышать мышьяком, но теперь мы нашли микробов, делающих кое-что новое — они выстраивают части собственного организма из мышьяка».

Предположения о возможности существования организмов, у которых роль фосфора может выполнять мышьяк, выдвигались и ранее[4]. Открытие организма, использующего в своей биохимии элементы, отличающиеся от общих для земной жизни углерода, кислорода, водорода, азота, фосфора и серы, могло бы добавить вес гипотезе об альтернативной биохимии и помочь в понимании возможных путей эволюции земной жизни[5] и в поиске жизни на других планетах[6].

Фосфор является одним из необходимых элементов жизни. Он входит в состав аденозинтрифосфата, универсального переносчика энергии клетки. Также фосфор является составной частью фосфолипидов, формирующих мембраны клеток.

Однако сообщение о том, что мышьяк может образовывать такие же устойчивые органические соединения, что и фосфор, вызвало волну критики в мировом научном сообществе. В частности, указывалось, что не был проведен рентгеноструктурный анализ ДНК, который смог бы дать точный ответ на вопрос, присутствует ли мышьяк в ДНК бактерии[7].

Критики, подвергающие сомнению связь между содержанием мышьяка в организме бактерии и использованием его в качестве компонентов организма, указывали на возможность существования механизма изоляции крупинок мышьяка в вакуолях, наподобие механизма изоляции серы в серных бактериях. Выдвигалось также предположение, что мышьяк используется бактериями не для построения ДНК, а ограничивается использованием мышьяколипидов, из которых, теоретически, могут быть построены клеточные мембраны, причём, скорее всего, из-за химической нестабильности мышьяколипидов, в комбинации с фосфолипидами.

Опровержение[править | править код]

Фото бактерии GFAJ-1, растущих в среде с фосфором. (Из статьи F. Wolfe-Simon и J. Switzer Blum)
Фото бактерии GFAJ-1, растущих в среде с мышьяком. (Из статьи F. Wolfe-Simon и J. Switzer Blum)

Через два года после открытия сразу две независимые группы исследователей опровергли факт существования биологически значимого мышьяка в ДНК бактерии.

Профессор Розмари Рэдфилд в своём блоге 4 декабря 2010 года, анализируя статью Фелисы Вольф-Саймон, написала о том, что «высокотехнологичным методам определения содержания мышьяка, вроде масс-спектрометрии, предшествовали крайне примитивные методы выделения и очистки».[8] 21 июня 2011 года профессор получила для исследования живой штамм GFAJ-1. Ещё полгода потребовалось группе под руководством Рэдфилд (Университет Британской Колумбии, Ванкувер, Канада; Принстонский университет, США; Медицинский институт Говарда Хьюза, США), чтобы разобраться с условиями роста штамма GFAJ-1 в условиях избытка, или наоборот, недостатка различных элементов (калия, кальция, натрия, фосфора, мышьяка). Наконец, 14 января 2012 года, были обнародованы результаты. Из двух культур штамма, одна из которых была выращена в условиях избытка мышьяка, а вторая — при его отсутствии, была выделена ДНК. В результате, по данным центрифугирования в CsCl-градиенте и масс-спектрометрии мышьяк не был обнаружен ни в одной из проб. Таким образом, было доказано, что мышьяк не встраивается в ДНК бактерии GFAJ-1. Наличие мышьяка в работах Вольф-Саймон объяснялось небрежными методами очистки.[9]

Группа исследователей из Института микробиологии Высшей технической школы Цюриха (Швейцария) показала, что даже в условиях недостатка фосфора и избытка соединений мышьяка бактерии до последнего будут использовать фосфор. Если концентрация фосфора падает ниже некоторого предельно допустимого значения, рост бактерий прекращается, и никакой мышьяк помочь им не в состоянии. Органические молекулы с мышьяком действительно могут попадаться в бактериях GFAJ-1, но, как оказалось, эти молекулы образуются абиотическим образом, то есть без помощи бактериальных ферментов, и самой бактерией не используются[10].

Некоторые СМИ утверждают, что «группа биологов из Ванкуверского университета Британской Колумбии опровергла свои же выводы»[11][12]. Однако это неверно — открывателями бактерии (и авторами утверждения о наличии мышьяка в ДНК) является группа Ф. Вулф-Саймон, Астробиологический институт НАСА, Калифорния.

В октябре 2012 года была опубликована статья, авторы которой показали, что поверхностные белки GFAJ-1 связывают преимущественно фосфаты. Такое поведение наблюдалось даже тогда, когда концентрация арсенатов в среде была в 4,5 тысячи раз больше, чем фосфатов[13][14].

См. также[править | править код]

Примечания[править | править код]

  1. Wolfe-Simon F., Blum J.S., Kulp T.R., et al. A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus (англ.) // Science : journal. — 2010. — December. — DOI:10.1126/science.1197258. — PMID 21127214.
  2. Arsenic-eating microbe may redefine chemistry of life (англ.). naturenews. Дата обращения 26 января 2011. Архивировано 24 февраля 2012 года.
  3. Астробиологическое открытие ведёт насыщенную ядом жизнь. membrana. Дата обращения 26 января 2011. Архивировано 24 февраля 2012 года.
  4. Пол Дэвис. «Чужие среди своих» — журнал «В мире науки», № 3, март 2008 г.
  5. Алексей Тимошенко. Научными сенсациями 2010 года стали «Нобелевка» за графен и жизнь на основе мышьяка (недоступная ссылка). Фундаментальные основы жизни. gzt.ru (29 декабря 2010). Дата обращения 29 декабря 2010. Архивировано 23 апреля 2011 года.
  6. Бактерии «на мышьяке» могут лучше себя чувствовать на Титане. РИА Новости (3 декабря 2010). Дата обращения 4 декабря 2010. Архивировано 6 июля 2012 года.
  7. Надежда Маркина. Эксперимент по поиску внеземного бюджета. Infox.ru (13 декабря 2010). Дата обращения 13 декабря 2010. Архивировано 6 июля 2012 года.
  8. Felisa Wolfe-Simon’s poster at the Dec. 2011 AGU meeting // http://rrresearch.fieldofscience.com, 16 dec 2011 (англ.)
  9. Елена Клещенко. Две дамы, ДНК и мышьяк. Дата обращения 26 июля 2012. Архивировано 9 августа 2012 года.
  10. Кирилл Стасевич. Опровергнуто существование бактерий с ДНК на основе мышьяка (недоступная ссылка). Дата обращения 26 июля 2012. Архивировано 12 июля 2012 года.
  11. Открыватели бактерий, использующих мышьяк, опровергли свои выводы. Дата обращения 26 июля 2012. Архивировано 9 августа 2012 года.
  12. Открыватели «внеземной» формы жизни опровергли её существование. Дата обращения 26 июля 2012. Архивировано 9 августа 2012 года.
  13. Биологи попытались окончательно опровергнуть теорию «мышьяковой жизни». lenta.ru (4 октября 2012). Архивировано 8 декабря 2012 года.
  14. ‘Arsenic-life’ bacterium prefers phosphorus after all. Nature News (3 октября 2012). Архивировано 8 декабря 2012 года.

Ссылки[править | править код]