Метод Феррари: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 47: Строка 47:
:<math>\ c= x_1x_2x_3x_4 =W^4+( V^2+K^2)W^2+K^2V^2= W^4+2W^4+aV^2+2W^2V^2- V^4+aW^2</math>
:<math>\ c= x_1x_2x_3x_4 =W^4+( V^2+K^2)W^2+K^2V^2= W^4+2W^4+aV^2+2W^2V^2- V^4+aW^2</math>
или
или
:<math>\ V^4-(a+ 2W^2) V2 +c-3W^4 - aW^2=0</math>
:<math>\ V^4-(a+ 2W^2) V^2 +c-3W^4 - aW^2=0</math>
Итого
Итого
:<math>\ V^2=1/2(( a+ 2W^2)\pm \sqrt{a^2-4c+ 6aW^2+16W^4})</math>
:<math>\ V^2=1/2(( a+ 2W^2)\pm \sqrt{a^2-4c+ 6aW^2+16W^4})</math>

Версия от 10:16, 13 февраля 2011

Метод Феррари — аналитический метод решения алгебраического уравнения четвёртой степени.

Описание метода

Если — произвольный корень кубического уравнения

((2))

(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений

где подкоренное выражение в правой части является полным квадратом. Отметим, что дискриминанты исходного уравнения (*) четвёртой степени и уравнения (2) совпадают.

Представим уравнение четвёртой степени в виде:

Его решение может быть найдено из следующих выражений:

если , решив и, сделав подстановку , найдём корни:
.
, (любой знак квадратного корня подойдёт)
, (три комплексных корня, один из которых подойдёт)
Два ±s должны иметь одинаковый знак, ±t — независимы. Для того, чтобы найти все корни, надо найти x для знаковых комбинаций ±st = +,+ для +,− для −,+ для −,−. Двойные корни появятся два раза, тройные корни — три раза и корни четвёртого порядка — четыре раза. Порядок корней зависит от того, какой из кубических корней U выбран.

Вывод

Пусть имеется уравнение вида:

Обозначим корни уравнения как . В канонической форме будет выполнятся соотношение

Учитывая мнимость по меньшей мере двух корней можно сделать представить корни как:

Причём W,V –действительные числа. Выразим a через корни уравнения

Выразим К через остальные коэффициенты:

или

Итого

Или

Отсюда

Заменяя получаем резольвенту, решив которую , находим W

История

С 15 лет Луиджи Феррари был учеником у миланского математика Джероламо Кардано и быстро обнаружил выдающиеся способности. К этому времени Кардано уже был известен алгоритм решения кубических уравнений; Феррари сумел найти аналогичный способ для решения уравнений четвёртой степени. Оба алгоритма Кардано опубликовал в своей книге "Высокое искусство".

См. также

Ссылки

Шаблон:Нет интервики