Функция Мёбиуса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 21: Строка 21:
количество различных подмножеств, состоящих из нечётного числа элементов, равно количеству
количество различных подмножеств, состоящих из нечётного числа элементов, равно количеству
различных подмножеств, состоящих из чётного числа элементов, — факт, применяемый также в доказательстве
различных подмножеств, состоящих из чётного числа элементов, — факт, применяемый также в доказательстве
[[#Обращение Мёбиуса|формулы обращения Мёбиуса]].
[[Обращение Мёбиуса|формулы обращения Мёбиуса]].


* <math>\sum\limits_{k=1}^n \mu(k)\left[\frac{n}{k}\right]=1.</math>
* <math>\sum\limits_{k=1}^n \mu(k)\left[\frac{n}{k}\right]=1.</math>

Версия от 10:07, 30 мая 2013

Функция Мёбиуса  — мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.

Определение

определена для всех натуральных чисел и принимает значения в зависимости от характера разложения числа на простые сомножители:

  • , если свободно от квадратов (то есть не делится на квадрат никакого простого числа) и разложение на простые множители состоит из чётного числа сомножителей;
  • , если свободно от квадратов и разложение на простые множители состоит из нечётного числа сомножителей;
  • , если не свободно от квадратов.

По определению также полагают .

50 первых точек
50 первых точек

Свойства и приложения

  • Функция Мёбиуса мультипликативна: для любых взаимно простых чисел и выполняется равенство .
  • Сумма значений функции Мёбиуса по всем делителям целого числа , не равного единице, равна нулю

Это, в частности, следует из того, что для всякого непустого конечного множества количество различных подмножеств, состоящих из нечётного числа элементов, равно количеству различных подмножеств, состоящих из чётного числа элементов, — факт, применяемый также в доказательстве формулы обращения Мёбиуса.

Функция Мертенса в свою очередь тесно связана с задачей о нулях дзета-функции Римана, см. статью гипотеза Мертенса.

Обращение Мёбиуса

Первая формула обращения Мёбиуса

Для арифметических функций и ,

тогда и только тогда, когда

.

Вторая формула обращения Мёбиуса

Для вещественнозначных функций и , определённых при ,

тогда и только тогда, когда

.

Здесь сумма интерпретируется как .

См. также

Ссылки

  • Виноградов И. М., Основы теории чисел, 9 изд., М., 1981.
  • Холл М. Комбинаторика = Combinatorial Theory. — М.: Мир, 1970. — 424 с.