Дзета-функция Римана

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Качественный график дзета-функции Римана на действительной оси. Слева от нуля значения функции увеличены в 100 раз для наглядности

Дзета-функция Римана — функция комплексного переменного , при определяемая с помощью ряда Дирихле:

где .

В заданной области этот ряд сходится, является аналитической функцией и допускает аналитическое продолжение на всю комплексную плоскость без единицы.

Дзета-функция Римана для вещественных s > 1

Тождество Эйлера[править | править вики-текст]

В исходной области также верно представление в виде бесконечного произведения (тождество Эйлера)

,

где произведение берётся по всем простым числам .

Это равенство представляет собой одно из основных свойств дзета-функции.

Свойства[править | править вики-текст]

Дзета-функции Римана в комплексной плоскости
  • Существуют явные формулы для значений дзета-функции в чётных целых точках:
    , где  — число Бернулли.

В частности, ,

где - полигамма -функция;

  • Про значения дзета-функции в нечётных целых точках известно мало: предполагается, что они являются иррациональными и даже трансцендентными, но пока доказана только лишь иррациональность числа ζ(3) (Роже Апери, 1978). Также доказано, что среди значений ζ(5), ζ(7), ζ(9), ζ(11) есть хотя бы одно иррациональное.[1]
  • При
    • , где  — функция Мёбиуса
    • , где  — функция Лиувиля
    • , где  — число делителей числа
    • , где  — число простых делителей числа
  • имеет в точке простой полюс с вычетом, равным 1.
  • Дзета-функция при удовлетворяет уравнению:
    ,
где  — гамма-функция Эйлера. Это уравнение называется функциональным уравнением Римана.
  • Для функции
    ,
введённой Риманом для исследования и называемой кси-функцией Римана, это уравнение принимает вид:
.

Нули дзета-функции[править | править вики-текст]

Как следует из функционального уравнения Римана, в полуплоскости , функция имеет лишь простые нули в отрицательных чётных точках: . Эти нули называются «тривиальными» нулями дзета-функции. Далее, при вещественных . Следовательно, все «нетривиальные» нули дзета-функции являются комплексными числами. Кроме того, они обладают свойством симметрии относительно вещественной оси и относительно вертикали и лежат в полосе , которая называется критической полосой. Согласно гипотезе Римана, они все находятся на критической прямой .

Обобщения[править | править вики-текст]

Существует довольно большое количество специальных функций, связанных с дзета-функцией Римана, которые объединяются общим названием дзета-функции и являются её обобщениями. Например:

которая совпадает с дзета-функцией Римана при q = 1 (так как суммирование ведётся от 0, а не от 1).
  • Полилогарифм:
который совпадает с дзета-функцией Римана при z = 1.
которая совпадает с дзета-функцией Римана при z = 1 и q = 1 (так как суммирование ведётся от 0, а не от 1).

Аналогичные конструкции[править | править вики-текст]

В теории гауссовых интегралов по траекториям возникает задача регуляризации детерминантов. Одним из подходов к её решению является введение дзета-функции оператора.[2] Пусть  — неотрицательно определённый самосопряжённый оператор, имеющий чисто дискретный спектр . Причём существует вещественное число такое, что оператор имеет след. Тогда дзета-функция оператора определяется для произвольного комплексного числа , лежащего в полуплоскости , может быть задана сходящимся рядом

Если заданная таким образом функция допускает продолжение аналитическое продолжение на область, содержащую некоторую окрестность точки , то на её основе можно определить регуляризованный детерминант оператора в соответствии с формулой

История[править | править вики-текст]

Как функция вещественной переменной, дзета-функция была введена в 1737 году Эйлером, который и указал её разложение в произведение. Затем эта функция рассматривалась Дирихле и, особенно успешно, Чебышёвым при изучении закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы Римана (1859), где дзета-функция рассматривалась как функция комплексной переменной.

Ссылки[править | править вики-текст]

Литература[править | править вики-текст]

  • Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешённая проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2..
  • Тахтаджян Л.А. Квантовая механика для математиков / Перевод с английского к.ф.-м.н. С.А. Славнов. — Изд. 2-е. — М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", Ижевский институт компьютерных исследований, 2011. — 496 с. — ISBN 978-5-93972-900-0.

Примечания[править | править вики-текст]

  1. В. В. Зудилин Об иррациональности значений дзета-функции в нечетных точках // УМН. — 2001. — Т. 56, № 2(338). — С. 215–216.
  2. Тахтаджян, 2011, с. 348.