Кольца Ньютона

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину[1].

Описание[править | править вики-текст]

Интерференционная картина в виде концентрических колец (колец Ньютона) возникает между поверхностями одна из которых плоская, а другая имеет большой радиус кривизны (например, стеклянная пластинка и плосковыпуклая линза). Исаак Ньютон, исследовав их в монохроматическом и белом свете, обнаружил, что радиус колец возрастает с увеличением длины волны (от фиолетового к красному).[2]

Классическое объяснение явления[править | править вики-текст]

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны. Рассмотрим случай, когда монохроматическая волна падает почти перпендикулярно на плосковыпуклую линзу.

Рис. 1
Пример колец Ньютона

Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть у них одинаковые длины волн, а разность их фаз постоянна. Разность фаз возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

~\Delta=m\lambda — max, где - ~m  любое целое число,  ~\lambda -  длина волны.

Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.

~\Delta=(2m+1){\lambda\over 2} — min, где - ~m  любое целое число,  ~\lambda -  длина волны.

Для учета того, что в разных веществах скорость света различна, при определении положений минимумов и максимумов используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптической разностью хода.

~nr — оптическая длина пути,

~n_2r_2-n_1r_1=\Delta — оптическая разность хода.

Если известен радиус кривизны R поверхности линзы, то можно вычислить, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волны определенной длины λ гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Необходимо также учитывать тот факт, что при отражении световой волны от оптически более плотной среды фаза волны меняется на \pi, этим объясняется тёмное пятно в точке соприкосновения линзы и плоскопараллельной пластины. Линии постоянной толщины воздушной прослойки под сферической линзой представляют собой концентрические окружности при нормальном падении света, при наклонном — эллипсы.

Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:

 r_k = \sqrt{\left(k - {1 \over 2}\right)\frac{\lambda R}{n}},

где

R — радиус кривизны линзы;
k = 1, 2, …;
λ — длина волны света в вакууме;
n — показатель преломления среды между линзой и пластинкой.

Использование[править | править вики-текст]

Кольца Ньютона используются для измерения радиусов кривизны поверхностей, для измерения длин волн света и показателей преломления. В некоторых случаях (например, при сканировании изображений на плёнках или оптической печати с негатива) кольца Ньютона представляют собой нежелательное явление.

Примечания[править | править вики-текст]

  1. Гагарин А. П. Ньютона кольца // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3 Магнитоплазменный компрессор — Пойнтинга теорема. — С. 370-371. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Мякишев Г. Я., Буховцев Б. Б. §58. Интерференция света // Физика: Учеб. для 10 кл. сред. шк. — 9-е изд. — М.: Просвещение, 1987. — С. 160. — 319 с.

Ссылки[править | править вики-текст]