Филогенетика

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Филогене́тика, или филогенети́ческая система́тика — область биологической систематики, которая занимается идентификацией и прояснением эволюционных взаимоотношений среди разных видов жизни на Земле, как современных, так и вымерших. Эволюционная теория утверждает, что сходство среди индивидуумов или видов часто указывает на общее происхождение или общего предка. Потому взаимоотношения, установленные филогенетической систематикой, часто описывают эволюционную историю видов и их филогенез, исторические взаимоотношения между ветвями организмов или их частей, например, их генов. Филогенетическая таксономия, являющаяся ответвлением, но не логическим продолжением филогенетической систематики[1], занимается классификацией групп организмов согласно степени их эволюционных отношений.

Основателем систематики, области науки, которая занимается классификацией живых организмов и взаимоотношениями между компонентами живого, считается Карл Линней. Однако только в конце 1950-х годов немецкий энтомолог Вилли Хенниг высказал идею, что систематика должна отображать известную эволюционную историю так близко, как только возможно[2]. Так был основан подход к систематике, который он назвал филогенетической систематикой. Противники Хеннига пренебрежительно называли его последователей «кладистами»[3], из-за акцента на признание только монофилетичных групп или клад. Однако, кладисты быстро приняли это название как полезный термин, и кладистический подход начал преобладать в систематике. Противоположностью филогенетической систематики является фенетика.

Филогенетические деревья[править | править вики-текст]

Систематика описывает взаимоотношения среди таксонов и призвана помочь нам понять историю всех живых организмов. Но история не является чем-то, что мы можем увидеть, она произошла один раз и оставила только косвенные показатели фактических событий. Ученые используют эти показатели, чтобы построить гипотезы, или модели, истории жизни. В филогенетике наиболее удобный путь визуального представления эволюционных взаимоотношений среди групп организмов осуществляется посредством графиков, которые называются филогенетическими деревьями.

Пример филогенетического дерева
  • Узел: представляет таксономическую единицу. Он может быть или существующей группой или предком.
  • Ветвь: определяет взаимоотношение между таксонами в терминах потомков и предков.
  • Топология: правило по которому разветвляется дерево.
  • Длина ветви: представляет число изменений, которые произошли между таксонами.
  • Корень: общий предок всех рассматриваемых организмов.
  • Масштаб расстояния: масштаб, который отражает число отличий между организмами или последовательностями генома.
  • Клада: группа двух или больше таксонов или последовательностей ДНК, которая включает как своего общего предка, так и всех его потомков.
  • Оперативная таксономическая единица (ОТЕ, OTU): уровень детализации, выбранный исследователем для данной работы, например индивидуумы, популяции, виды, роды или линии бактерий.

Методы филогенетического анализа[править | править вики-текст]

Существуют две главные группы методов изучения филогенетических взаимоотношений: фенетические и кладистические методы. Важно отметить, что фенетика и кладистика имели запутанные взаимоотношения в течение последних 40 лет ХХ века[источник не указан 440 дней]. Большинство современных биологов-эволюционистов отдают преимущество кладистике[источник не указан 440 дней], хотя, строго говоря, кладистический подход может приводить к неинтуитивным результатам.

Кладистические методы[править | править вики-текст]

Альтернативный подход к схематическому изображению взаимоотношений между таксонами называется кладистикой. Основное предположение кладистики заключается в том, что члены группы имеют общую эволюционную историю. Потому они более близко относятся друг к другу, чем к другим группам организмов. Связанные группы определяются по наличию набора уникальных особенностей (апоморфий), которые отсутствовали в отдаленных предках, но которые характерны для большинства или всех организмов в пределах группы. Полученные характеристики, относящиеся к членам группы называются синапоморфиями. Потому, в отличие от фенетических, кладистические группы не зависят от того сходны ли организмы по физическим чертам, а зависят от их эволюционных взаимоотношений. Действительно, в кладистических анализах у двух организмов могут быть общими многочисленные характеристики, но они будут членами разных групп.

Кладистический анализ использует ряд предположений. Например, считается что виды являются только раздвоением, или отделением, из наследственной группы. В случае гибридизации (скрещивание) или горизонтального переноса генетической информации виды считаются исчезнувшими, а такие явления — редкими или отсутствующими. Кроме того, кладистические группы должны иметь следующие характеристики: все виды в группе должны разделять общего предка и все виды, полученные от общего предка, должны войти в таксон. Соблюдение этих требований приводит к следующим терминам, которые используются для ссылки на разные возможные способы состава групп:

  • Монофилетическая группа (или клада), у которой все виды разделяют общего предка и все виды что происходят от этого общего предка включаются в группу. Только такая форма воспринимается кладистами как «правильная».
  • Парафилетическая группа, у которой все виды разделяют общего предка, но не все виды, которые происходят от этого общего предка, включаются в группу.
  • Полифилетическая группа, в которой виды, которые не разделяют непосредственного общего предка, складываются одну группу, исключая виды, которые бы связали их.

Молекулярная филогенетика[править | править вики-текст]

Макромолекулярные данные, под которыми имеется в виду последовательности генетического материала (ДНК) и белков, накапливаются всё быстрыми темпами благодаря успехам молекулярной биологии. Для эволюционной биологии быстрое накопление данных последовательностей целых геномов имеет значительную ценность, потому что сама природа ДНК позволяет использовать его как «документ» эволюционной истории. Сравнения последовательности ДНК разных генов у разных организмов могут сказать ученому много нового об эволюционных взаимоотношениях организмов, которые не могут иначе быть обнаружены на основе морфологии, или по внешней форме организмов, и их внутренней структуре. Поскольку геномы эволюционируют через постепенное накопление мутаций, количество отличий последовательности нуклеотидов между парой геномов разных организмов должно указать, как давно эти два генома разделили общего предка. Два генома, которые разделились в недавнем прошлом, должны иметь меньшие отличий, чем два генома, чей общий предок очень давний. Потому, сравнивая разные геномы друг с другом, возможно получить сведения об эволюционном взаимоотношения между ними. Это является главной задачей молекулярной филогенетики.

Молекулярная филогенетика пытается определить скорость и отличия изменений в ДНК и белках, чтобы восстановить эволюционную историю генов и организмов. Чтобы получить эту информацию, могут использоваться два общих подхода. В первом подходе, ученые используют ДНК, чтобы изучать эволюцию организма. Во втором подходе, используются разные организмы, чтобы изучать эволюцию ДНК. В любом подходе общая цель — сделать вывод относительно процесса эволюции организма по изменениям ДНК и процесса молекулярной эволюции по картине изменений ДНК.

Примечания[править | править вики-текст]

  1. Reconstruction of evolutionary trees // Phenetic and Phylogenetic Classification. — 1964. — P. 67–76.
  2. Hennig. W. (1950). Grundzuge einer theorie der phylogenetischen systematik. Deutscher Zentralverlag, Berlin.
  3. Cain, A. J., Harrison, G. A. 1960. «Phyletic weighting». Proceedings of the Zoological Society of London 35: 1-31.

Литература[править | править вики-текст]

  • Biological Systematics: principles and applications. — 2nd. — Ithaca: Comstock Pub. Associates/Cornell University Press, 2009. — ISBN 978-0-8014-4799-0.
  • Forster, P., Renfrew C.: «Phylogenetic Methods and the Prehistory of Languages.» McDonald Institute Press, University of Cambridge, 2006. ISBN 978-1-902937-33-5

Ссылки[править | править вики-текст]