Модуль непрерывности

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Для любой функции , определённой на множестве , можно ввести понятие модуля непрерывности этой функции, обозначаемого . Модуль непрерывности — тоже функция, по определению равная

или верхней грани колебания функции по всем подотрезкам из длиной меньше . Также в литературе встречаются другие обозначения: и (реже) .

Свойства модуля непрерывности[править | править вики-текст]

Введённая функция обладает рядом интересных свойств.

  • При любом она неотрицательна.
  • Функция не убывает.
  • Функция полуаддитивна, если выпукло:
  • По определению в точке 0 модуль непрерывности равен 0:
  • Теорема о равномерной непрерывности может быть сформулирована следующим образом. Если функция определена на отрезке и непрерывна на нём, то , и наоборот. Данный предел обозначается также .
  • Если непрерывна на , то её модуль непрерывности также непрерывная функция на отрезке .

Связанные понятия[править | править вики-текст]

Модуль непрерывности оказался тонким инструментом исследования разнообразных свойств функции, таких как:

Вариации и обобщения[править | править вики-текст]

Модули непрерывности высших порядков[править | править вики-текст]

Нетрудно заметить, что в определении модуля непрерывности используется конечная разность первого порядка от функции .

Если вместо конечной разности первого порядка взять конечную разность порядка , то получим определение модуля непрерывности порядка . Обычное обозначение для таких модулей — .

Свойства[править | править вики-текст]

  • Если  — целое число, то

Неклассические модули непрерывности[править | править вики-текст]

Известно много разных обобщений понятия модуля непрерывности. Например, можно заменить оператор конечной разности другим разностным оператором с произвольными коэффициентами. Можно разрешить этим коэффициентам быть непостоянными и меняться в зависимости от точки, где берётся этот разностный оператор. Можно разрешить и шагу, с которым берётся разностный оператор также зависеть от точки. Подобные неклассические модули непрерывности находят своё применение в различных областях современной математики.

Ссылки[править | править вики-текст]