Неравенство Маркова

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.

Формулировка[править | править вики-текст]

Пусть неотрицательная случайная величина определена на вероятностном пространстве , и её математическое ожидание конечно. Тогда

,

где .

Если в неравенство подставить вместо случайной величины случайную величину , то получим неравенство Чебышёва:

Примеры[править | править вики-текст]

1. Пусть — неотрицательная случайная величина. Тогда, взяв , получаем

.

2. Пусть в среднем ученики опаздывают на 3 минуты, и нас интересует, какова вероятность того, что ученик опоздает на 15 и более минут. Чтобы получить грубую оценку сверху, можно воспользовать неравенством Маркова:

.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]