Разбиение числа

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Разбие́ние числа́  — это представление в виде суммы положительных целых чисел, называемых частями. При этом порядок следования частей не учитывается (в отличие от композиций), то есть разбиения, отличающиеся только порядком частей, считаются равными. В канонической записи разбиения части перечисляются в невозрастающем порядке.

Число разбиений натурального числа является одним из фундаментальных объектов изучения в теории чисел.

Примеры[править | править код]

Например, {3, 1, 1} или {3, 2} — разбиения числа 5, поскольку 5 = 3 + 1 + 1 = 3 + 2. Всего существует разбиений числа 5: {1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}.

Некоторые значения числа разбиений приведены в следующей таблице[1]:

n p(n) Разбиения
1 1 {1}
2 2 {1, 1}, {2}
3 3 {1, 1, 1}, {2, 1}, {3}
4 5 {1, 1, 1, 1}, {2, 1, 1}, {2, 2}, {3, 1}, {4}
5 7 {1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}
6 11
7 15
8 22
9 30
10 42
20 627
50 204 226
100 190 569 292
1000 24 061 467 864 032 622 473 692 149 727 991

Число разбиений[править | править код]

Производящая функция[править | править код]

Последовательность числа разбиений имеет следующую производящую функцию:

Эта формула была открыта Эйлером в 1740 году.

Пентагональная теорема Эйлера[править | править код]

Изучая производящую функцию последовательности , Эйлер сосредоточил внимание на её знаменателе, то есть, на произведении . Это бесконечное произведение при раскрытии скобок приобретает следующий вид:

Показатели степеней в правой части — числа вида где  — целое число, а знак при равен . Для натуральных :  — это пятиугольные числа.[2]

Согласно этому наблюдению, Эйлер предположил, что должна быть верна Пентагональная теорема:

.

Впоследствии эта теорема была доказана Эйлером. Она позволяет вычислять числа разбиений при помощи деления формальных степенны́х рядов.

Асимптотические формулы[править | править код]

Асимптотическое выражение для количества разбиений было получено Харди и Рамануджаном и впоследствии уточнено Радемахером. Оригинальное выражение Харди — Рамануджана[источник не указан 1992 дня]

при

даёт, например, . Уточнение Радемахера представляет число разбиений в виде сходящегося ряда

где

Здесь суммирование ведётся по , взаимно простым с , а  — сумма Дедекинда. Ряд сходится очень быстро.

Рекуррентные формулы[править | править код]

Количество разбиений числа на слагаемые, не превышающие , удовлетворяет рекуррентной формуле:

с начальными значениями:

для всех

При этом количество всевозможных разбиений числа равно .

Количество разбиений натурального числа на слагаемых удовлетворяет рекуррентной формуле:

с начальными значениями:

Диаграммы Юнга[править | править код]

Диаграмма Юнга разбиения 10 = 5 + 4 + 1.

Разбиения удобно представлять в виде наглядных геометрических объектов, называемых диаграммами Юнга, в честь английского математика Альфреда Юнга[en]. Диаграмма Юнга разбиения  — подмножество первого квадранта плоскости, разбитое на ячейки, каждая из которых представляет собой единичный квадрат. Ячейки размещаются в строки, первая строка имеет длину , над ней расположена строка длиной , и т. д. до -ой строки длины . Строки выровнены по левому краю.

Более формально, диаграмма Юнга — это замыкание множества точек таких, что

и

где обозначает целую часть .

В англоязычной литературе диаграммы Юнга часто изображают отражёнными относительно оси абсцисс.

Схожий объект, называемый диаграммой Феррерса, отличается тем, что

  • вместо ячеек изображаются точки;
  • диаграмма транспонируется: ряды и столбцы меняются местами.

Применение[править | править код]

Разбиения естественным образом возникают в ряде математических задач. Наиболее значимой из них является теория представлений симметрической группы, где разбиения естественно параметризуют все неприводимые представления. Суммы по всем разбиениям часто встречаются в математическом анализе.

См. также[править | править код]

Примечания[править | править код]

  1. Последовательность A000041 в OEIS
  2. Табачников С. Л., Фукс Д. Б. Математический дивертисмент. — МЦНМО, 2011. — ISBN 978-5-94057-731-7.

Литература[править | править код]