Формальный степенной ряд

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Формальный степенно́й ряд — формальное алгебраическое выражение вида:

в котором коэффициенты принадлежат некоторому кольцу .

В отличие от степенных рядов в анализе, формальным степенным рядам не придаётся числовых значений и сходимость таких рядов не рассматривается.

Формальные степенные ряды исследуются в алгебре, топологии, комбинаторике. Кроме того, они являются удобным инструментом при исследовании различных гладких объектов, например, в дифференциальной топологии и теории дифференциальных уравнений.

Основные понятия[править | править код]

Алгебраические операции[править | править код]

На формальных степенных рядах можно определить операции сложения (), умножения (), формального дифференцирования () и композиции () следующим образом. Пусть

Тогда

(при этом необходимо, чтобы ).

Таким образом, формальные степенные ряды над кольцом сами образуют кольцо, обозначаемое .

Метрика и топология[править | править код]

В кольце также можно задать топологию, порождаемую следующей метрикой:

где  — наименьшее натуральное число такое, что .

Можно доказать, что определённые умножение и сложение в этой топологии являются непрерывными, и тогда, формальные степенные ряды с определённой топологией образуют топологическое кольцо.

Обратимые элементы[править | править код]

Формальный ряд

в является обратимым тогда и только тогда, когда является обратимым в . Это является необходимым, поскольку свободный член произведения равен , и достаточным, поскольку коэффициенты обращённого ряда определяются по формуле:

Свойства[править | править код]

  • Максимальными идеалами кольца формальных степенных рядов являются идеалы , для которых является максимальным идеалом в и есть порождение и .
  • Если является локальным кольцом, то локальным кольцом является также .
  •  — нётерово кольцо, то также является кольцом Нётер.
  • Если  — область целостности, то также будет областью целостности.
  • Метрическое пространство является полным.
  • Кольцо является компактным тогда, когда кольцо является конечным.
  • Лемма Бореля — Уитни: для любого формального ряда существует такая бесконечно-гладкая функция, ряд Тейлора которой совпадает с данным формальным рядом[1].

См. также[править | править код]

Ссылки[править | править код]

Примечания[править | править код]

  1. Павлова Н. Г., Ремизов А. О. Гладкие функции, формальные ряды и теоремы Уитни // Математическое образование. — 2016. — № 3 (79). — стр. 54.