Теорема Гюйгенса — Штейнера
Теоре́ма Гю́йгенса — Ште́йнера (теорема Гюйгенса, теорема Штейнера): момент инерции тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями[1]:
- .
Теорема названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астронома Христиана Гюйгенса.
Вывод
[править | править код]Будем рассматривать абсолютно твёрдое тело, образованное совокупностью материальных точек[2].
По определению момента инерции для и можно записать
где — радиус-вектор точки тела в системе координат с началом, расположенным в центре масс, а — радиус-вектор точки в новой системе координат, через начало которой проходит новая ось.
Радиус-вектор можно расписать как сумму двух векторов:
где — радиус-вектор расстояния между старой (проходящей через центр масс) и новой осями вращения. Тогда выражение для момента инерции примет вид
Вынося за сумму, получим
По определению центра масс, для его радиус-вектора выполняется
Поскольку в системе координат с началом, расположенным в центре масс, радиус-вектор центра масс равен нулю, то равна нулю и сумма .
Тогда
откуда и следует искомая формула:
где — известный момент инерции относительно оси, проходящей через центр масс тела.
Если тело состоит не из материальных точек, а образовано непрерывно распределённой массой, то во всех приведённых выше формулах суммирование заменяется интегрированием. Ход рассуждения при этом остаётся прежним.
Следствие. Из полученной формулы очевидно, что . Поэтому можно утверждать: момент инерции тела относительно оси, проходящей через центр масс тела, является наименьшим среди всех моментов инерции тела относительно осей, имеющих данное направление.
Пример
[править | править код]Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню (назовём её осью ) равен
Тогда, согласно теореме Штейнера, его момент относительно произвольной параллельной оси будет равен
где — расстояние между этой осью и осью . В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти, положив в последней формуле :
Пересчёт тензора инерции
[править | править код]Теорема Гюйгенса — Штейнера допускает обобщение на тензор момента инерции, что позволяет получать тензор относительно произвольной точки из тензора относительно центра масс. Пусть — смещение от центра масс, тогда
где
- — вектор смещения от центра масс, а — символ Кронекера.
Как видно, для диагональных элементов тензора (при ) формула имеет вид теоремы Гюйгенса — Штейнера для момента относительно новой оси.
См. также
[править | править код]Примечания
[править | править код]- ↑ Тарг С. М. Краткий курс теоретической механики. — 11-е изд. — М.: «Высшая школа», 1995. — С. 268—269. — 416 с. — ISBN 5-06-003117-9.
- ↑ Абсолютно твёрдое тело, образованное совокупностью материальных точек, — это такая механическая система, у которой расстояния между составляющими её точками постоянны.
Для улучшения этой статьи по физике желательно:
|