abc-гипотеза

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

abc-гипотеза (гипотеза Эстерле — Массера) — утверждение в теории чисел, сформулированное независимо друг от друга математиками Дэвидом Массером в 1985 году[1] и Джозефом Эстерле в 1988 году[2].

Решение гипотезы составляет одну из главных проблем теории чисел.

Формулировка[править | править вики-текст]

При данном существует постоянная , при которой для любых трёх взаимно простых целых чисел , и , таких, что , выполняется неравенство:

,

где радикал целого числа.

Замечания[править | править вики-текст]

  • Не теряя общности, можно рассматривать только упорядоченные по возрастанию натуральные числа , и . Тогда неравенство сводится к следующему:
  • Условие необходимо. Для любого существует тройка взаимно простых чисел таких, что . Например тройка вида , где .

Доказательство гипотезы Била[править | править вики-текст]

Из справедливости abc-гипотезы следует справедливость гипотезы Била для достаточно больших , а из неё — справедливость великой теоремы Ферма для достаточно больших степеней.[3]


Доказательство гипотезы Пиллаи[править | править вики-текст]

Из справедливости abc-гипотезы следует справедливость гипотезы Пиллаи, а из неё — справедливость гипотезы Каталана.

Доказательство Мотидзуки[править | править вики-текст]

В августе 2012 года авторитетный японский математик Синъити Мотидзуки заявил, что ему удалось доказать abc-гипотезу[4][5]. В октябре того же года Веселин Димитров и Акшай Венкатеш обнаружили ошибку в доказательстве, Мотидзуки признал этот факт, но заявил, что данная ошибка не влияет на основные результаты, а также обещал в ближайшее время опубликовать исправленную версию[6], что позже и сделал; последний из серии исправленных документов был датирован декабрём 2013 года[5].

Опубликовав доказательство, Мотидзуки отказался от всех предложений лично рассказать сообществу о своих результатах, но несколько математиков взялись за самостоятельную проверку доказательства при содействии Мотидзуки. Он публикует отчёты о ходе этой работы[7]. Начиная с конца 2015 года, Мотидзуки стал понемногу общаться с сообществом о своих результатах[8].

Таким образом, доказательство Синъити Мотидзуки общедоступно, не опровергнуто, но пока и не считается проверенным. Длительное пребывание доказательства в этом неопределённом статусе необычно для математических доказательств[9] (в отличие от случаев, когда в доказательствах, которые считались проверенными и верными, обнаруживались ошибки).

Примечания[править | править вики-текст]

  1. D. W. Masser Open problems (англ.) // Proceedings of the Symposium on Analytic Number Theory / W. W. L. Chen. — London: Imperial College, 1985. — Vol. 25.
  2. J. Oesterlé Nouvelles approches du "théorème" de Fermat (фр.) // Séminaire N. Bourbaki. — 1988. — Vol. 694. — P. 165–186. — ISSN 0303-1179.
  3. R. Daniel Mauldin A Generalization of Fermat’s Last Theorem: The Beal Conjecture and Prize Problem (англ.) // Notices of the AMS. — 1985. — Vol. 44, no. 11. — P. 1436-1437.
  4. Японский математик заявил о доказательстве АВС-гипотезы, Lenta.ru (11 сентября 2012). Проверено 11 сентября 2012.
  5. 1 2 Mochizuki, Shinichi (August 2012). Inter-universal Teichmuller Theory I: Construction of Hodge Theaters, Inter-universal Teichmuller Theory II: Hodge-Arakelov-theoretic Evaluation, Inter-universal Teichmuller Theory III: Canonical Splittings of the Log-theta-lattice., Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations, доступны на странице http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html
  6. Kevin Hartnett. An ABC proof too tough even for mathematicians (3 November 2012).
  7. IUTeich Verification Report 2013-12, IUTeich Verification Report 2014-12
  8. «Японский Перельман» согласился объяснить главнейшую тайну математики. // Lenta.ru, 2015-10-08
  9. Caroline Chen. The Paradox of the Proof (4 мая 2013). Проверено 6 сентября 2016. Перевод: Даниил Басманов. Парадокс доказательства (17 июня 2013). Проверено 6 сентября 2016.

Ссылки[править | править вики-текст]

Литература[править | править вики-текст]