Масштабная инвариантность
Масштабная инвариантность (скейлинг) — свойство уравнений физики сохранять свой вид при изменении всех расстояний и промежутков времени в одинаковое число раз, то есть[1]
Причём здесь подразумевается лишь изменение единиц измерения, само пространство-время остаётся неизменным. Такие изменения называются преобразованиями подобия и образуют группу масштабных преобразований.
Преобразование физических величин
[править | править код]При масштабном преобразовании одни физические величины остаются неизменными, а другие изменяются в соответствии со своей размерностью. Причём здесь имеется в виду размерность, несколько отличная от размерности СИ, поскольку, например, заряд в принципе не может меняться при масштабном преобразовании, но в СИ его единица является производной от единицы времени.
К масштабно инвариантным величинам относятся:
Изменяются при масштабном преобразовании:
Масштабная инвариантность в различных науках
[править | править код]Математика
[править | править код]В математике понятие масштабной инвариантности обычно относится к инвариантности отдельных функций или кривых по отношению к преобразованию подобия. Также близким по смыслу является понятие самоподобие. Кроме того, некоторые распределения вероятностей случайных процессов, демонстрируют масштабную инвариантность или самоподобие.
Классическая теория поля
[править | править код]В классической теории поля под масштабной инвариантностью часто понимается инвариантность всей теории относительно преобразований подобия. Такие теории обычно описывают классические физические процессы без характеристической длины.
Квантовая теория поля
[править | править код]В квантовой теории поля масштабная инвариантность интерпретируется в терминах физики элементарных частиц. В масштабно-инвариантной теории, сила взаимодействия частиц не должна зависеть от их энергии.[2]
Статистическая физика
[править | править код]В статистической физике масштабная инвариантность встречается дважды.
Во-первых, это свойство фазовых переходов. Ключевым элементом здесь является то, что вблизи фазового перехода или критической точки имеют место флуктуации любого масштаба, и поэтому следует искать явно масштабно-инвариантную теорию для описания этих явлений.
Во-вторых, это свойство распределения открытого статистического ансамбля (ОСА). Здесь общий член распределения вложенной подсистемы соответствует такому же для исходной системы.
Нарушение масштабной инвариантности
[править | править код]Масштабные ограничения
[править | править код]Уравнения классической физики являются масштабно инвариантными, если в их решения входит масса или другие размерные параметры, не меняющиеся при масштабном преобразовании. Например, уравнения Максвелла.
Уравнения квантовой физики, например, уравнение Клейна-Гордона и уравнение Дирака, масштабно инвариантны только для расстояний, малых по сравнению с комптоновской длиной волны соответствующих частиц, и промежутков времени, малых по сравнению с .
Глубоко неупругие процессы
[править | править код]Нарушения масштабной инвариантности обнаружены при столкновений частиц. В физике элементарных частиц рассматривают несколько альтернативных не масштабно инвариантных скейлингов:
- скейлинг Бьёркена
- скейлинг Фейнмана
- скейлинг Кобы — Нильсена — Олесена (KNO-скейлинг)
См. также
[править | править код]Примечания
[править | править код]- ↑ Макеенко Ю. М. Масштабная инвариантность // Математическая физика. Энциклопедия / Гл. ред. Л. Д. Фаддеев. — М.: Большая Российская энциклопедия, 1998. — С. 351. — 691 с.
- ↑ Ю. Д. Прокошкин Инклюзивные процессы и масштабная инвариантность // Ю. Д. Прокошкин Физика элементарных частиц. - М., Наука, 2006. - с. 63-65
Литература
[править | править код]- Масштабная инвариантность — статья из Физической энциклопедии
- Zaskulnikov V. M., Open statistical ensemble: new properties (scale invariance, application to small systems, meaning of surface particles, etc.): arXiv:1004.0896v1
- Мюллер.Х. Скейлинг как фундаментальное свойство собственных колебаний вещества и фрактальная структура пространства-времени: [1]