Распределение вероятностей

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их принятия.

Определение[править | править исходный текст]

Определение 1. Пусть задано вероятностное пространство (\Omega, \mathcal{F}, \mathbb{P}), и на нём определена случайная величина X:\Omega \to \mathbb{R}. В частности, по определению, X является измеримым отображением измеримого пространства (\Omega, \mathcal{F}) в измеримое пространство (\mathbb{R},\mathcal{B}(\mathbb{R})), где \mathcal{B}(\mathbb{R}) обозначает борелевскую сигма-алгебру на \mathbb{R}. Тогда случайная величина X индуцирует вероятностную меру \mathbb{P}^X на \mathbb{R} следующим образом:

\mathbb{P}^X(B) = \mathbb{P}(X^{-1}(B)),\; \forall B\in \mathcal{B}(\mathbb{R}).

Мера \mathbb{P}^X называется распределением случайной величины X. Иными словами, \mathbb{P}^X(B)=\mathbb{P}(X\in B), таким образом \mathbb{P}^X(B) задаёт вероятность того, что случайная величина X попадает во множество B\in \mathcal{B}(\mathbb{R}).

Способы задания распределений[править | править исходный текст]

Определение 2. Функция F_X(x) = \mathbb{P}^X((-\infty,x]) = \mathbb{P}(X \leqslant x) называется (кумулятивной) функцией распределения случайной величины X. Из свойств вероятности вытекает

Теорема 1. Функция распределения F_X(x) любой случайной величины удовлетворяет следующим трем свойствам:

  1. F_X — функция неубывающая;
  2. \lim_{x\to -\infty} F_X(x) = 0,\; \lim_{x\to \infty}F_X(x) = 1;
  3. F_X непрерывна слева.

Из того факта, что борелевская сигма-алгебра на вещественной прямой порождается семейством интервалов вида \{(-\infty,x]\}_{x\in \mathbb{R}}, вытекает

Теорема 2. Любая функция F(x), удовлетворяющая трём свойствам, перечисленным выше, является функцией распределения для какого-то распределения \mathbb{P}^X.

Для вероятностных распределений, обладающих определенными свойствами, существуют более удобные способы его задания.

Дискретные распределения[править | править исходный текст]

Определение 3. Случайная величина называется простой или дискретной, если она принимает не более, чем счётное число значений. То есть X(\omega) = a_i,\; \forall \omega \in A_i, где \{A_i\}_{i=1}^{\infty} — разбиение \Omega.

Распределение простой случайной величины тогда по определению задаётся: \mathbb{P}^X(B) = \sum_{i:a_i \in B} \mathbb{P}(A_i). Введя обозначение p_i = \mathbb{P}(A_i), можно задать функцию p(a_i) = p_i. Очевидно, что \sum_{i=1}^{\infty}p_i = 1. Используя счётную аддитивность \mathbb{P}, легко показать, что эта функция однозначно определяет распределение X.

Определение 4. Функция p(a_i) = p_i, где \sum_{i=1}^{\infty} p_i = 1 часто называется дискретным распределением.

Пример 1. Пусть функция p задана таким образом, что p(-1) = \frac{1}{2} и p(1) = \frac{1}{2}. Эта функция задаёт распределение случайной величины X, для которой \mathbb{P}(X=\pm 1) = \frac{1}{2} (распределение Бернулли).

Теорема 3. Дискретное распределение обладает следующими свойствами:

1.  p_i \geqslant 0;

2.  \sum_{i=1}^{n} p_i = 1.

Непрерывные распределения[править | править исходный текст]

Непрерывное распределение — распределение вероятностей, не имеющее атомов. Любое распределение вероятностей есть дискретное, непрерывное или смесь дискретного и непрерывного. В приложениях нередко не делают разницы между терминами непрерывное распределение и абсолютно непрерывное распределение (см. далее).

Абсолютно непрерывные распределения[править | править исходный текст]

Абсолютно непрерывными называют распределения, имеющие плотность вероятности. Кумулятивная функция таких распределений абсолютно непрерывна в смысле Лебега.

Определение 5. Распределение случайной величины X называется абсолютно непрерывным, если существует неотрицательная функция f_X:\mathbb{R}\to \mathbb{R}_+, такая что \mathbb{P}^X(B) \equiv \mathbb{P}(X\in B) = \int\limits_B f_X(x)\, dx. Функция f_X тогда называется плотностью распределения случайной величины X.

Пример 2. Пусть f(x) = 1, когда 0\leqslant x \leqslant 1, и 0 — в противном случае. Тогда \mathbb{P}(a < X < b) = \int\limits_a^b 1\, dx = b-a, если (a,b) \subset [0,1].

Очевидно, что для любой плотности распределения f_X верно равенство \int\limits_{-\infty}^{\infty} f_X(x)\, dx = 1. Верна и обратная

Теорема 4. Если функция f:\mathbb{R}\to \mathbb{R} такая, что:

  1. f(x) \geqslant 0,\; \forall x \in \mathbb{R};
  2. \int\limits_{-\infty}^{\infty} f(x)\, dx = 1,

то существует распределение \mathbb{P}^X такое, что f(x) является его плотностью.

Просто применение формулы Ньютона-Лейбница приводит к простому соотношению между кумулятивной функцией и плотностью абсолютно непрерывного распределения.

Теорема 5. Если f(x) — непрерывная плотность распределения, а F(x) — его кумулятивная функция, то

  1. F'(x) = f(x),\; \forall x \in \mathbb{R},
  2. F(x) = \int\limits_{-\infty}^x f(t)\, dt.
Bvn-small.png  п·о·р        Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | дискретное равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | гиперэкспоненциальное | Колмогорова | Коши | Лапласа | логнормальное | нормальное (Гаусса) | логистическое | Накагами |Парето | полукруговое | непрерывное равномерное | Райса | Рэлея | Стьюдента | Фишера | хи-квадрат | экспоненциальное | variance-gamma многомерное нормальное | копула

Примечания[править | править исходный текст]

При построении распределения по эмпирическим (опытным) данным следует избегать ошибок округления.