Метод Феррари: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
неправильный коэффициент (было 2)
отмена правки 90807062 участника 92.75.235.133 (обс.); было правильно
Метка: отмена
Строка 57: Строка 57:
Или <math>\ b^2=2W^2\cdot( a^2-4c+ 8aW^2+16 W^4)</math>
Или <math>\ b^2=2W^2\cdot( a^2-4c+ 8aW^2+16 W^4)</math>


Отсюда <math>\ 32 W^6 +16aW^4+4(a^2-4c) W^2-b^2=0</math>
Отсюда <math>\ 32 W^6 +16aW^4+2(a^2-4c) W^2-b^2=0</math>


Заменяя <math>\ y=W^2</math> получаем резольвенту, решив которую, находим W
Заменяя <math>\ y=W^2</math> получаем резольвенту, решив которую, находим W

Версия от 01:14, 9 февраля 2018

Метод Феррари — аналитический метод решения алгебраического уравнения четвёртой степени, предложенный итальянским математиком Лодовико Феррари.

Описание метода

Пусть уравнение 4-й степени имеет вид

. (1)

Если  — произвольный корень кубического уравнения

(2)

(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений

где подкоренное выражение в правой части является полным квадратом. Отметим, что дискриминанты исходного уравнения (1) четвёртой степени и уравнения (2) совпадают.

Представим уравнение четвёртой степени в виде:

Его решение может быть найдено из следующих выражений:

если , тогда, решив и, сделав подстановку , найдём корни:
.
, (любой знак квадратного корня подойдёт)
, (три комплексных корня, один из которых подойдёт)
Два ±s — один и тот же знак при нахождении конкретного x, при этом ±t будет другим или тем же. Все корни x можно найти при всех четырёх комбинациях знаков ±s и ±t: «+,+»; «+,−»; «−,+» и «−,−». Двойные корни появятся два раза, тройные корни — три раза и корни четвёртого порядка — четыре раза. Порядок корней зависит от того, какой из кубических корней U выбран.

Вывод

Пусть имеется уравнение канонического вида:

Обозначим корни уравнения как . Для корней уравнения в канонической форме будет выполняться соотношение

Это уравнение будет иметь по меньшей мере два недействительных корня, которые будут сопряженными друг другу. Будем считать, что это

Причём ,  — действительные числа. Тогда два других корня можно записать как

Здесь может быть либо действительным, либо чисто мнимым числом. Выразим a через корни уравнения

Выразим К через остальные коэффициенты:

или

Итого

Или

Отсюда

Заменяя получаем резольвенту, решив которую, находим W

История

С 15 лет Луиджи Феррари был учеником у миланского математика Джероламо Кардано, который быстро обнаружил его выдающиеся способности. К этому времени Кардано уже был известен алгоритм решения кубических уравнений; Феррари сумел найти аналогичный способ для решения уравнений четвёртой степени. Оба алгоритма Кардано опубликовал в своей книге «Высокое искусство».

См. также

Ссылки