Инфламмасома: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 1: Строка 1:
[[Файл:Inflammasome vector.svg|thumb|Схема инфламмасомы NLRP3]]
[[Файл:Inflammasome vector.svg|thumb|Схема инфламмасомы NLRP3]]
'''Инфламмасо́ма''' ({{lang-en|inflammasome}} от {{lang-en|inflammation}} — [[воспаление]]) — [[Мультибелковый комплекс|многобелковый]] [[олигомер]]ный комплекс, отвечающий за активацию воспалительного ответа. Инфламмасома способствует созреванию и [[Секреция (физиология)|секреции]] провоспалительных [[Цитокины|цитокинов]] [[Интерлейкин 1|интерлейкина-1β]] (IL-1β) и [[Интерлейкин 18|интерлейкина 18]] (IL-18). Секреция этих цитокинов вызывает [[пироптоз]] — особый вид [[Программируемая клеточная гибель|программируемой клеточной гибели]]. Нарушения в функционировании инфламмасом приводят к разнообразным болезням. Инфламмасомы образуются в [[Миелоцит|миелоидных клетках]] и являются частью [[Врождённый иммунитет|врождённого иммунитета]]. В состав инфламмасомы могут входить такие [[Белок|белки]], как [[каспаза 1]], [[PYCARD]], {{нп5|NLRP||en|NLRP}} и иногда {{нп5|каспаза 5||en|Caspase 5}} (также известная как каспаза 11 или ICH-3). В некоторых случаях инфламмасомы сформированы [[Клеточный рецептор|рецепторами]], содержащими [[нуклеотид]]-связывающий олигомеризационный [[Домен белка|домен]] и повторы, богатые [[лейцин]]ом ({{lang-en|nucleotide-binding oligomerization domain and leucine-rich repeat-containing receptors, NLRs}}) и [[AIM2]]-подобные рецепторы ({{lang-en|AIM2-like receptors, ALRs}}). Состав конкретной инфламмасомы зависит от активатора, который запустил её образование. Так, состав инфламмасом, формирование которых активировала двуцепочечная [[РНК]] (дцРНК), отличается от такового у инфламмасом, сформированных под действием [[асбест]]а.
'''Инфламмасо́ма''' ({{lang-en|inflammasome}} от {{lang-en|inflammation}} — [[воспаление]]) — [[Мультибелковый комплекс|многобелковый]] [[олигомер]]ный комплекс, отвечающий за активацию воспалительного ответа<ref name="Mariathasan2004">{{cite pmid|15190255}}</ref>. Инфламмасома способствует созреванию и [[Секреция (физиология)|секреции]] провоспалительных [[Цитокины|цитокинов]] [[Интерлейкин 1|интерлейкина-1β]] (IL-1β) и [[Интерлейкин 18|интерлейкина 18]] (IL-18)<ref name="Martinon2002">{{cite pmid|12191486}}</ref>. Секреция этих цитокинов вызывает [[пироптоз]] — особый вид [[Программируемая клеточная гибель|программируемой клеточной гибели]]<ref name="pmid15784530">{{cite pmid|15784530}}</ref>. Нарушения в функционировании инфламмасом приводят к разнообразным болезням<ref name=":1">{{Cite pmid|21892172}}</ref>. Инфламмасомы образуются в [[Миелоцит|миелоидных клетках]] и являются частью [[Врождённый иммунитет|врождённого иммунитета]]. В состав инфламмасомы могут входить такие [[Белок|белки]], как [[каспаза 1]], [[PYCARD]], {{нп5|NLRP||en|NLRP}} и иногда {{нп5|каспаза 5||en|Caspase 5}} (также известная как каспаза 11 или ICH-3). В некоторых случаях инфламмасомы сформированы [[Клеточный рецептор|рецепторами]], содержащими [[нуклеотид]]-связывающий олигомеризационный [[Домен белка|домен]] и повторы, богатые [[лейцин]]ом ({{lang-en|nucleotide-binding oligomerization domain and leucine-rich repeat-containing receptors, NLRs}}) и [[AIM2]]-подобные рецепторы ({{lang-en|AIM2-like receptors, ALRs}})<ref>{{Cite pmid|25879279}}</ref>. Состав конкретной инфламмасомы зависит от активатора, который запустил её образование. Так, состав инфламмасом, формирование которых активировала двуцепочечная [[РНК]] (дцРНК), отличается от такового у инфламмасом, сформированных под действием [[асбест]]а<ref>{{Cite pmid|18288107}}</ref><ref>{{Cite pmid|21562230}}</ref>.


== История изучения ==
== История изучения ==
Инфламмасомы были описаны исследовательской группой под руководством Jürg Tschopp в 2002 году в [[Университет Лозанны|Университете Лозанны]]. Исследователи смогли точно установить роль инфламмасом в развитии таких заболеваний, как [[подагра]] и [[сахарный диабет 2-го типа]]. Они обнаружили, что формирование инфламмасом могут запустить разнообразные сигналы опасности: [[вирус]]ная [[ДНК]], {{нп5|мурамилдипептид||en|Muramyl dipeptide}}, асбест и [[кремний]]. Они также установили связь между [[Метаболический синдром|метаболическим синдромом]] и инфламмасомами вида [[NLRP3]]. Когда они изучали NLRP3, то им удалось показать, что, когда инфламмасомы NLRP3 подавлены, то проявляется [[Иммуносупрессия|иммуносупрессивный]] эффект {{нп5|Интерферон I типа|интерферона I типа|en|Interferon type I}}. Наконец, группа Tschopp запустила исследования и поиск лечения для многих заболеваний, связанных с инфламмасомами.
Инфламмасомы были описаны исследовательской группой под руководством Jürg Tschopp в 2002 году в [[Университет Лозанны|Университете Лозанны]]<ref name="Martinon2002"/><ref name=":0">{{cite pmid|22075986}}</ref>. Исследователи смогли точно установить роль инфламмасом в развитии таких заболеваний, как [[подагра]] и [[сахарный диабет 2-го типа]]. Они обнаружили, что формирование инфламмасом могут запустить разнообразные сигналы опасности: [[вирус]]ная [[ДНК]], {{нп5|мурамилдипептид||en|Muramyl dipeptide}}, асбест и [[кремний]]. Они также установили связь между [[Метаболический синдром|метаболическим синдромом]] и инфламмасомами вида [[NLRP3]]. Когда они изучали NLRP3, то им удалось показать, что, когда инфламмасомы NLRP3 подавлены, то проявляется [[Иммуносупрессия|иммуносупрессивный]] эффект {{нп5|Интерферон I типа|интерферона I типа|en|Interferon type I}}. Наконец, группа Tschopp запустила исследования и поиск лечения для многих заболеваний, связанных с инфламмасомами<ref name=":0" />.


== Функции ==
== Функции ==
Один из первых включающихся защитных механизмов, включающихся при [[Инфекция|инфекции]], — это врождённый иммунитет, а именно, [[рецепторы опознавания паттерна]], которые распознают особые [[молекулы]] (паттерны) на поверхности [[патоген]]ов. Рецепторы опознавания паттерна могут распознаваться как на [[Клеточная мембрана|мембранах]] [[Клетка (биология)|клеток]], как [[Толл-подобные рецепторы|Toll-подобные рецепторы]] (TLRs) и рецепторы [[Лектины типа С|лектинов C-типа]] (CLRs), так и в [[Цитоплазма|цитоплазме]], как [[Nod-подобные рецепторы]] (NLRs) и [[RIG-I-подобные рецепторы]] (RLRs). В 2002 году Martinon и коллеги впервые сообщили, что подвид NLRs, известный как [[NLRP1]], могут олигомеризоваться и собираться в комплекс, который активирует каскад каспазы 1, приводящий, в конце концов, к образованию провоспалительных цитокинов, особенно IL-1β и IL-18. Комплекс, формируемый NLRP1, получил название инфламмасомы. Впоследствии были описаны другие виды инфламмасом, такие как NLRP3 и [[NLRC4]]. В 2009 году было описано новое семейство инфламмасом, содержащих белок AIM2, которые активируются в ответ на появление в цитоплазме клетки чужеродной двуцепочечной ДНК (дцДНК).
Один из первых включающихся защитных механизмов, включающихся при [[Инфекция|инфекции]], — это врождённый иммунитет, а именно, [[рецепторы опознавания паттерна]], которые распознают особые [[молекулы]] (паттерны) на поверхности [[патоген]]ов. Рецепторы опознавания паттерна могут распознаваться как на [[Клеточная мембрана|мембранах]] [[Клетка (биология)|клеток]], как [[Толл-подобные рецепторы|Toll-подобные рецепторы]] (TLRs) и рецепторы [[Лектины типа С|лектинов C-типа]] (CLRs), так и в [[Цитоплазма|цитоплазме]], как [[Nod-подобные рецепторы]] (NLRs) и [[RIG-I-подобные рецепторы]] (RLRs). В 2002 году Jürg Tschopp и коллеги впервые сообщили, что подвид NLRs, известный как [[NLRP1]], могут олигомеризоваться и собираться в комплекс, который активирует каскад каспазы 1, приводящий, в конце концов, к образованию провоспалительных цитокинов, особенно IL-1β и IL-18. Комплекс, формируемый NLRP1, получил название инфламмасомы<ref name="Hornung2009">{{cite pmid|19158675}}</ref>. Впоследствии были описаны другие виды инфламмасом, такие как NLRP3 и [[NLRC4]]. В 2009 году было описано новое семейство инфламмасом, содержащих белок AIM2, которые активируются в ответ на появление в цитоплазме клетки чужеродной двуцепочечной ДНК (дцДНК)<ref>{{cite pmid|24630723}}</ref>.


== Воспалительный каскад ==
== Воспалительный каскад ==
Подобно [[Апоптосома|апоптосоме]], запускающей гибель клетки по пути [[апоптоз]]а, инфламмасома запускает воспалительный [[Передача сигнала (биология)|сигнальный каскад]], приводящий к пироптозу — другой форме программируемой клеточной гибели. Активная инфламмасома связывается с прокаспазой-1 (предшественницей каспазы-1) посредством либо собственного [[CARD (домен)|домена привлечения и активации каспаз]] (CARD-домена от {{lang-en|caspase activation and recruitment domain}}) или через CARD-домен {{нп5|Адаптерный белок (передача сигнала)|адаптерного белка|en|Signal transducing adaptor protein}} PYCARD, который связывается с инфламмасомой на этапе её формирования. Одна инфламмасома связывается с несколькими молекулами прокаспазы-1 (p45), запуская их [[Автокатализ|автокаталитическое]] разрезание на две молекулы — p10 и p20. p10 и p20 формируют [[Белковый димер|гетеродимеры]], а два гетеродимера, связываясь друг с другом, образуют активную каспазу-1. Активная каспаза-1 инициирует несколько связанных с воспалением процессов, таких как созревание IL-1β и IL-18 из молекул-предшественников. Эти [[интерлейкины]], в свою очередь, индуцируют секрецию {{нп5|Интерферон гамма|интерферона γ|en|Interferon gamma}} и активируют [[натуральные киллеры]]. Далее происходит разрезание и инактивация [[Интерлейкин 33|интерлейкина-33]] (IL-33), {{нп5|фрагментация ДНК||en|DNA fragmentation}} и формирование пор в клетке, подавление [[фермент]]ов [[гликолиз]]а, активация [[биосинтез]]а [[липид]]ов и секреция молекул, способствующих восстановлению [[Ткань (биология)|тканей]], таких как предшественник интерлейкина-1α (IL-1α).
Подобно [[Апоптосома|апоптосоме]], запускающей гибель клетки по пути [[апоптоз]]а, инфламмасома запускает воспалительный [[Передача сигнала (биология)|сигнальный каскад]], приводящий к пироптозу — другой форме программируемой клеточной гибели<ref>{{Cite doi|10.1038/nrmicro2070}}</ref>. Активная инфламмасома связывается с прокаспазой-1 (предшественницей каспазы-1) посредством либо собственного [[CARD (домен)|домена привлечения и активации каспаз]] (CARD-домена от {{lang-en|caspase activation and recruitment domain}}) или через CARD-домен {{нп5|Адаптерный белок (передача сигнала)|адаптерного белка|en|Signal transducing adaptor protein}} PYCARD, который связывается с инфламмасомой на этапе её формирования. Одна инфламмасома связывается с несколькими молекулами прокаспазы-1 (p45), запуская их [[Автокатализ|автокаталитическое]] разрезание на две молекулы — p10 и p20.<ref>{{cite pmid|8662843}}</ref>. p10 и p20 формируют [[Белковый димер|гетеродимеры]], а два гетеродимера, связываясь друг с другом, образуют активную каспазу-1. Активная каспаза-1 инициирует несколько связанных с воспалением процессов, таких как созревание IL-1β<ref name="Martinon2002" /> и IL-18 из молекул-предшественников. Эти [[интерлейкины]], в свою очередь, индуцируют секрецию {{нп5|Интерферон гамма|интерферона γ|en|Interferon gamma}} и активируют [[натуральные киллеры]]<ref>{{cite pmid|8999548}}</ref>. Далее происходит разрезание и инактивация [[Интерлейкин 33|интерлейкина-33]] (IL-33)<ref>{{cite pmid|19439663}}</ref>, {{нп5|фрагментация ДНК||en|DNA fragmentation}} и формирование пор в клетке<ref>{{cite pmid|16824040}}</ref>, подавление [[фермент]]ов [[гликолиз]]а<ref>{{cite pmid|17959595}}</ref>, активация [[биосинтез]]а [[липид]]ов<ref>{{cite pmid|16990137}}</ref> и секреция молекул, способствующих восстановлению [[Ткань (биология)|тканей]], таких как предшественник интерлейкина-1α (IL-1α)<ref>{{cite pmid|18329368}}</ref>.


== Нарушения ==
== Нарушения ==
Нарушения в регуляции инфламмасом связаны с рядом [[Аутоиммунные заболевания|аутоиммунных заболеваний]], таких как [[Сахарный диабет 1-го типа|сахарный диабет 1-го]] и 2-го типа, {{нп5|воспалительная болезнь кишечника||en|Inflammatory bowel disease}}, подагрический [[артрит]], [[рассеянный склероз]], [[витилиго]], а также со многими хроническими воспалительными болезнями. Эти болезни связаны с избыточной или недостаточной секрецией провоспалительных цитокинов, за которую отвечают инфламмасомы.
Нарушения в регуляции инфламмасом связаны с рядом [[Аутоиммунные заболевания|аутоиммунных заболеваний]], таких как [[Сахарный диабет 1-го типа|сахарный диабет 1-го]] и 2-го типа, {{нп5|воспалительная болезнь кишечника||en|Inflammatory bowel disease}}, подагрический [[артрит]], [[рассеянный склероз]], [[витилиго]], а также со многими хроническими воспалительными болезнями<ref name=":1" /><ref>{{Cite pmid|24703401}}</ref>. Эти болезни связаны с избыточной или недостаточной секрецией провоспалительных цитокинов, за которую отвечают инфламмасомы<ref>{{Cite pmid|21884175}}</ref>.


== Примечания ==
== Примечания ==

Версия от 11:55, 31 июля 2019

Схема инфламмасомы NLRP3

Инфламмасо́ма (англ. inflammasome от англ. inflammationвоспаление) — многобелковый олигомерный комплекс, отвечающий за активацию воспалительного ответа[1]. Инфламмасома способствует созреванию и секреции провоспалительных цитокинов интерлейкина-1β (IL-1β) и интерлейкина 18 (IL-18)[2]. Секреция этих цитокинов вызывает пироптоз — особый вид программируемой клеточной гибели[3]. Нарушения в функционировании инфламмасом приводят к разнообразным болезням[4]. Инфламмасомы образуются в миелоидных клетках и являются частью врождённого иммунитета. В состав инфламмасомы могут входить такие белки, как каспаза 1, PYCARD, NLRP[англ.] и иногда каспаза 5[англ.] (также известная как каспаза 11 или ICH-3). В некоторых случаях инфламмасомы сформированы рецепторами, содержащими нуклеотид-связывающий олигомеризационный домен и повторы, богатые лейцином (англ. nucleotide-binding oligomerization domain and leucine-rich repeat-containing receptors, NLRs) и AIM2-подобные рецепторы (англ. AIM2-like receptors, ALRs)[5]. Состав конкретной инфламмасомы зависит от активатора, который запустил её образование. Так, состав инфламмасом, формирование которых активировала двуцепочечная РНК (дцРНК), отличается от такового у инфламмасом, сформированных под действием асбеста[6][7].

История изучения

Инфламмасомы были описаны исследовательской группой под руководством Jürg Tschopp в 2002 году в Университете Лозанны[2][8]. Исследователи смогли точно установить роль инфламмасом в развитии таких заболеваний, как подагра и сахарный диабет 2-го типа. Они обнаружили, что формирование инфламмасом могут запустить разнообразные сигналы опасности: вирусная ДНК, мурамилдипептид?!, асбест и кремний. Они также установили связь между метаболическим синдромом и инфламмасомами вида NLRP3. Когда они изучали NLRP3, то им удалось показать, что, когда инфламмасомы NLRP3 подавлены, то проявляется иммуносупрессивный эффект интерферона I типа[англ.]. Наконец, группа Tschopp запустила исследования и поиск лечения для многих заболеваний, связанных с инфламмасомами[8].

Функции

Один из первых включающихся защитных механизмов, включающихся при инфекции, — это врождённый иммунитет, а именно, рецепторы опознавания паттерна, которые распознают особые молекулы (паттерны) на поверхности патогенов. Рецепторы опознавания паттерна могут распознаваться как на мембранах клеток, как Toll-подобные рецепторы (TLRs) и рецепторы лектинов C-типа (CLRs), так и в цитоплазме, как Nod-подобные рецепторы (NLRs) и RIG-I-подобные рецепторы (RLRs). В 2002 году Jürg Tschopp и коллеги впервые сообщили, что подвид NLRs, известный как NLRP1, могут олигомеризоваться и собираться в комплекс, который активирует каскад каспазы 1, приводящий, в конце концов, к образованию провоспалительных цитокинов, особенно IL-1β и IL-18. Комплекс, формируемый NLRP1, получил название инфламмасомы[9]. Впоследствии были описаны другие виды инфламмасом, такие как NLRP3 и NLRC4. В 2009 году было описано новое семейство инфламмасом, содержащих белок AIM2, которые активируются в ответ на появление в цитоплазме клетки чужеродной двуцепочечной ДНК (дцДНК)[10].

Воспалительный каскад

Подобно апоптосоме, запускающей гибель клетки по пути апоптоза, инфламмасома запускает воспалительный сигнальный каскад, приводящий к пироптозу — другой форме программируемой клеточной гибели[11]. Активная инфламмасома связывается с прокаспазой-1 (предшественницей каспазы-1) посредством либо собственного домена привлечения и активации каспаз (CARD-домена от англ. caspase activation and recruitment domain) или через CARD-домен адаптерного белка[англ.] PYCARD, который связывается с инфламмасомой на этапе её формирования. Одна инфламмасома связывается с несколькими молекулами прокаспазы-1 (p45), запуская их автокаталитическое разрезание на две молекулы — p10 и p20.[12]. p10 и p20 формируют гетеродимеры, а два гетеродимера, связываясь друг с другом, образуют активную каспазу-1. Активная каспаза-1 инициирует несколько связанных с воспалением процессов, таких как созревание IL-1β[2] и IL-18 из молекул-предшественников. Эти интерлейкины, в свою очередь, индуцируют секрецию интерферона γ?! и активируют натуральные киллеры[13]. Далее происходит разрезание и инактивация интерлейкина-33 (IL-33)[14], фрагментация ДНК[англ.] и формирование пор в клетке[15], подавление ферментов гликолиза[16], активация биосинтеза липидов[17] и секреция молекул, способствующих восстановлению тканей, таких как предшественник интерлейкина-1α (IL-1α)[18].

Нарушения

Нарушения в регуляции инфламмасом связаны с рядом аутоиммунных заболеваний, таких как сахарный диабет 1-го и 2-го типа, воспалительная болезнь кишечника[англ.], подагрический артрит, рассеянный склероз, витилиго, а также со многими хроническими воспалительными болезнями[4][19]. Эти болезни связаны с избыточной или недостаточной секрецией провоспалительных цитокинов, за которую отвечают инфламмасомы[20].

Примечания

  1. Mariathasan S., Newton K., Monack D. M., Vucic D., French D. M., Lee W. P., Roose-Girma M., Erickson S., Dixit V. M. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. (англ.) // Nature. — 2004. — 8 July (vol. 430, no. 6996). — P. 213—218. — doi:10.1038/nature02664. — PMID 15190255. [исправить]
  2. 1 2 3 Martinon F., Burns K., Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. (англ.) // Molecular Cell. — 2002. — August (vol. 10, no. 2). — P. 417—426. — PMID 12191486. [исправить]
  3. Fink S. L., Cookson B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. (англ.) // Infection And Immunity. — 2005. — April (vol. 73, no. 4). — P. 1907—1916. — doi:10.1128/IAI.73.4.1907-1916.2005. — PMID 15784530. [исправить]
  4. 1 2 Ippagunta S. K., Malireddi R. K., Shaw P. J., Neale G. A., Vande Walle L., Green D. R., Fukui Y., Lamkanfi M., Kanneganti T. D. The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. (англ.) // Nature Immunology. — 2011. — 4 September (vol. 12, no. 10). — P. 1010—1016. — doi:10.1038/ni.2095. — PMID 21892172. [исправить]
  5. Kanneganti T. D. The inflammasome: firing up innate immunity. (англ.) // Immunological Reviews. — 2015. — May (vol. 265, no. 1). — P. 1—5. — doi:10.1111/imr.12297. — PMID 25879279. [исправить]
  6. Muruve D. A., Pétrilli V., Zaiss A. K., White L. R., Clark S. A., Ross P. J., Parks R. J., Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. (англ.) // Nature. — 2008. — 6 March (vol. 452, no. 7183). — P. 103—107. — doi:10.1038/nature06664. — PMID 18288107. [исправить]
  7. Dombrowski Y., Peric M., Koglin S., Kammerbauer C., Göss C., Anz D., Simanski M., Gläser R., Harder J., Hornung V., Gallo R. L., Ruzicka T., Besch R., Schauber J. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. (англ.) // Science Translational Medicine. — 2011. — 11 May (vol. 3, no. 82). — P. 82—38. — doi:10.1126/scitranslmed.3002001. — PMID 21562230. [исправить]
  8. 1 2 Dagenais M., Skeldon A., Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. (англ.) // Cell Death And Differentiation. — 2012. — January (vol. 19, no. 1). — P. 5—12. — doi:10.1038/cdd.2011.159. — PMID 22075986. [исправить]
  9. Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D. R., Latz E., Fitzgerald K. A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. (англ.) // Nature. — 2009. — 26 March (vol. 458, no. 7237). — P. 514—518. — doi:10.1038/nature07725. — PMID 19158675. [исправить]
  10. Cai X., Chen J., Xu H., Liu S., Jiang Q. X., Halfmann R., Chen Z. J. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. (англ.) // Cell. — 2014. — 13 March (vol. 156, no. 6). — P. 1207—1222. — doi:10.1016/j.cell.2014.01.063. — PMID 24630723. [исправить]
  11. Bergsbaken Tessa, Fink Susan L., Cookson Brad T. Pyroptosis: host cell death and inflammation (англ.) // Nature Reviews Microbiology. — 2009. — February (vol. 7, no. 2). — P. 99—109. — ISSN 1740-1526. — doi:10.1038/nrmicro2070. [исправить]
  12. Yamin T. T., Ayala J. M., Miller D. K. Activation of the native 45-kDa precursor form of interleukin-1-converting enzyme. (англ.) // The Journal Of Biological Chemistry. — 1996. — 31 May (vol. 271, no. 22). — P. 13273—13282. — doi:10.1074/jbc.271.22.13273. — PMID 8662843. [исправить]
  13. Gu Y., Kuida K., Tsutsui H., Ku G., Hsiao K., Fleming M. A., Hayashi N., Higashino K., Okamura H., Nakanishi K., Kurimoto M., Tanimoto T., Flavell R. A., Sato V., Harding M. W., Livingston D. J., Su M. S. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. (англ.) // Science (New York, N.Y.). — 1997. — 10 January (vol. 275, no. 5297). — P. 206—209. — doi:10.1126/science.275.5297.206. — PMID 8999548. [исправить]
  14. Cayrol C., Girard J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. (англ.) // Proceedings Of The National Academy Of Sciences Of The United States Of America. — 2009. — 2 June (vol. 106, no. 22). — P. 9021—9026. — doi:10.1073/pnas.0812690106. — PMID 19439663. [исправить]
  15. Fink S. L., Cookson B. T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. (англ.) // Cellular Microbiology. — 2006. — November (vol. 8, no. 11). — P. 1812—1825. — doi:10.1111/j.1462-5822.2006.00751.x. — PMID 16824040. [исправить]
  16. Shao W., Yeretssian G., Doiron K., Hussain S. N., Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. (англ.) // The Journal Of Biological Chemistry. — 2007. — 14 December (vol. 282, no. 50). — P. 36321—36329. — doi:10.1074/jbc.M708182200. — PMID 17959595. [исправить]
  17. Gurcel L., Abrami L., Girardin S., Tschopp J., van der Goot F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. (англ.) // Cell. — 2006. — 22 September (vol. 126, no. 6). — P. 1135—1145. — doi:10.1016/j.cell.2006.07.033. — PMID 16990137. [исправить]
  18. Keller M., Rüegg A., Werner S., Beer H. D. Active caspase-1 is a regulator of unconventional protein secretion. (англ.) // Cell. — 2008. — 7 March (vol. 132, no. 5). — P. 818—831. — doi:10.1016/j.cell.2007.12.040. — PMID 18329368. [исправить]
  19. So A., Busso N. The concept of the inflammasome and its rheumatologic implications. (англ.) // Joint, Bone, Spine : Revue Du Rhumatisme. — 2014. — October (vol. 81, no. 5). — P. 398—402. — doi:10.1016/j.jbspin.2014.02.009. — PMID 24703401. [исправить]
  20. Lamkanfi M., Vande Walle L., Kanneganti T. D. Deregulated inflammasome signaling in disease. (англ.) // Immunological Reviews. — 2011. — September (vol. 243, no. 1). — P. 163—173. — doi:10.1111/j.1600-065X.2011.01042.x. — PMID 21884175. [исправить]