Радиоизотопное датирование: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 1: Строка 1:
'''Радиоизото́пное''' или '''радиометри́ческое дати́рование'''  — метод определения возраста различных объектов, в составе которых есть какой-либо [[Радиоактивность|радиоактивный]] [[изотоп]]. Основан на определении того, какая доля этого изотопа успела распасться за время существования образца. По этой величине, зная [[период полураспада]] данного изотопа, можно рассчитать возраст образца.
'''Радиоизото́пное''' или '''радиометри́ческое дати́рование''' — метод определения возраста различных объектов, в составе которых есть какой-либо [[Радиоактивность|радиоактивный]] [[изотоп]]. Основан на определении того, какая доля этого изотопа успела распасться за время существования образца. По этой величине, зная [[период полураспада]] данного изотопа, можно рассчитать возраст образца.


Радиоизотопное датирование широко применяется в [[геология|геологии]], [[палеонтология|палеонтологии]], [[археология|археологии]] и других науках. Это источник практически всех [[Абсолютный геологический возраст|абсолютных датировок]] различных событий [[История Земли|истории Земли]]. До появления радиометрического датирования были возможны только относительные датировки — привязка к определённым геологическим [[Геологическая эра|эрам]], [[Геологический период|периодам]], [[Геологическая эпоха|эпохам]] и т. д., длительность которых была неизвестна.
Радиоизотопное датирование широко применяется в [[геология|геологии]], [[палеонтология|палеонтологии]], [[археология|археологии]] и других науках. Это источник практически всех [[Абсолютный геологический возраст|абсолютных датировок]] различных событий [[История Земли|истории Земли]]. До его появления были возможны только относительные датировки — привязка к определённым геологическим [[Геологическая эра|эрам]], [[Геологический период|периодам]], [[Геологическая эпоха|эпохам]] и т. д., длительность которых была неизвестна.


В различных методах радиоизотопного датирования используются разные изотопы разных элементов. Поскольку они сильно отличаются по химическим свойствам (и, следовательно, по содержанию в различных геологических и биологических материалах и по поведению в геохимических циклах), а также по периоду полураспада, у разных методов отличается область применимости. Каждый метод применим только к определённым материалам и определённому интервалу возрастов. Самые известные методы радиоизотопного датирования — это [[радиоуглеродный анализ|радиоуглеродный]], [[Калий-аргоновый метод|калий-аргоновый]] и [[Уран-свинцовый метод|уран-свинцовый]] анализ.
В различных методах радиоизотопного датирования используются разные изотопы разных элементов. Поскольку они сильно отличаются по химическим свойствам (и, следовательно, по содержанию в различных геологических и биологических материалах и по поведению в геохимических циклах), а также по периоду полураспада, у разных методов отличается область применимости. Каждый метод применим только к определённым материалам и определённому интервалу возрастов. Самые известные методы радиоизотопного датирования — это [[радиоуглеродный анализ|радиоуглеродный]], [[Калий-аргоновый метод|калий-аргоновый]] и [[Уран-свинцовый метод|уран-свинцовый]] анализ.


== История ==
== История ==
Идею радиоизотопного датирования предложил [[Резерфорд, Эрнест|Эрнест Резерфорд]] в 1904 году, через 8 лет после открытия радиоактивности [[Беккерель, Антуан Анри|Анри Беккерелем]]. Тогда же он сделал первую попытку определить возраст минерала по содержанию [[уран (элемент)|урана]] и [[гелий|гелия]]<ref group="Комм.">Оценка Резерфорда основывалась на данных [[Рамзай, Уильям|Рамзая]] и [[Траверс, Морис Уильям|Траверса]] по содержанию урана и гелия в [[фергусонит]]е (о том, что из урана образуется не только гелий, но и намного лучше подходящий для датировок свинец, ещё не было известно). Она составляла 40 млн лет; в следующем году Резерфорд пересмотрел её с учётом уточнённой скорости образования гелия и получил 500 млн лет.</ref><ref name=Lewis_2002/><ref name=Mattinson_2013_tgr/><ref name=Rutherford_1906/>. Уже через 2 года, в 1907, [[Болтвуд, Бертрам|Бертрам Болтвуд]], радиохимик из [[Йельский университет|Йельского университета]], опубликовал первые [[уран-свинцовый метод|уран-свинцовые]] датировки ряда образцов урановой руды и получил значения возраста от 410 до 2200 млн лет<ref name=Boltwood_1907/>. Результат имел большое значение: он показал, что [[возраст Земли]] во много раз больше 20-40 млн лет, полученных десятью годами ранее [[Томсон, Уильям (лорд Кельвин)|Уильямом Томсоном]] на основании скорости остывания планеты. Однако тогда не было известно про образование части свинца в результате распада [[торий|тория]] и даже про существование изотопов, и поэтому оценки Болтвуда обычно были завышены на десятки процентов, иногда почти вдвое<ref name=Dalrymple_1994/><ref name=White_2_1/>.
Идею радиоизотопного датирования предложил [[Резерфорд, Эрнест|Эрнест Резерфорд]] в 1905 году, через 9 лет после открытия радиоактивности [[Беккерель, Антуан Анри|Анри Беккерелем]]. Уже через 2 года, в 1907, [[Болтвуд, Бертрам|Бертрам Болтвуд]], радиохимик из [[Йельский университет|Йельского университета]], опубликовал первые определения возраста некоторых геологических образцов. В последующие годы шло интенсивное развитие [[Ядерная физика|ядерной физики]] и усовершенствование технологий, благодаря чему к середине 20 века была достигнута приемлемая точность радиоизотопных датировок. Этому особенно помогло изобретение [[масс-спектрометр]]а<ref name=usgs>{{Cite web|url=http://pubs.usgs.gov/gip/geotime/radiometric.html|title=Geologic Time: Radiometric Time Scale|publisher=[[United States Geological Survey]]|date=16 June 2001|archiveurl=http://www.webcitation.org/6BlmpPhvk|archivedate=2012-10-29}}</ref>. В 1949 году [[Либби, Уиллард Франк|Уиллард Либби]] разработал [[радиоуглеродный анализ]] и продемонстрировал его пригодность на образцах дерева известного возраста (в интервале 1400 — 4600 лет)<ref name=libby49>{{cite journal |last=Arnold |first=J. R. |coauthors=Libby, W. F. |year=1949 |title=Age Determinations by Radiocarbon Content: Checks with Samples of Known Age |journal=[[Science (journal)|Science]] |volume=110 |issue=2869 |pages=678–680 |doi=10.1126/science.110.2869.678 |url=http://hbar.phys.msu.ru/gorm/fomenko/libby.htm |pmid=15407879|bibcode = 1949Sci...110..678A }}</ref>, за что в 1960 году получил [[Нобелевская премия по химии|Нобелевскую премию по химии]].

В последующие годы шло интенсивное развитие [[Ядерная физика|ядерной физики]] и усовершенствование технологий, благодаря чему к середине 20 века была достигнута хорошая точность радиоизотопных датировок. Этому особенно помогло изобретение [[масс-спектрометр]]а<ref name=usgs>{{Cite web|url=http://pubs.usgs.gov/gip/geotime/radiometric.html|title=Geologic Time: Radiometric Time Scale|publisher=[[United States Geological Survey]]|date=16 June 2001|archiveurl=http://www.webcitation.org/6BlmpPhvk|archivedate=2012-10-29}}</ref>. В 1949 году [[Либби, Уиллард Франк|Уиллард Либби]] разработал [[радиоуглеродный анализ]] и продемонстрировал его пригодность на образцах дерева известного возраста (в интервале 1400 — 4600 лет)<ref name=libby49>{{cite journal |last=Arnold |first=J. R. |coauthors=Libby, W. F. |date=1949 |title=Age Determinations by Radiocarbon Content: Checks with Samples of Known Age |journal=[[Science (journal)|Science]] |volume=110 |issue=2869 |pages=678–680 |doi=10.1126/science.110.2869.678 |url=http://hbar.phys.msu.ru/gorm/fomenko/libby.htm |pmid=15407879|bibcode = 1949Sci...110..678A}}</ref>, за что в 1960 году получил [[Нобелевская премия по химии|Нобелевскую премию по химии]].


== Физические основы ==
== Физические основы ==
Строка 30: Строка 32:
: <math>t = -T_{1/2}\log_2 \frac{N(t)}{N_0}</math>
: <math>t = -T_{1/2}\log_2 \frac{N(t)}{N_0}</math>


Период полураспада не зависит от температуры, давления, химического окружения, интенсивности электромагнитных полей. Единственное известное исключение относится к тем изотопам, которые распадаются путём [[Электронный захват|электронного захвата]]: у них есть зависимость скорости распада от [[Электронная плотность|электронной плотности]] в районе ядра. К таким относятся, например, [[бериллий]]-7, [[стронций]]-85 и [[цирконий]]-89. У таких радиоизотопов скорость распада зависит от степени ионизации атома; есть также слабая зависимость от давления и температуры. Существенной проблемой для радиоизотопного датирования это не является.<ref>Johnson, B. 1993 [http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/decay_rates.html ''How to Change Nuclear Decay Rates''] Usenet Physics FAQ</ref>
Период полураспада не зависит от температуры, давления, химического окружения, интенсивности электромагнитных полей. Единственное известное исключение относится к тем изотопам, которые распадаются путём [[Электронный захват|электронного захвата]]: у них есть зависимость скорости распада от [[Электронная плотность|электронной плотности]] в районе ядра. К таким относятся, например, [[бериллий]]-7, [[стронций]]-85 и [[цирконий]]-89. У таких радиоизотопов скорость распада зависит от степени ионизации атома; есть также слабая зависимость от давления и температуры. Существенной проблемой для радиоизотопного датирования это не является<ref name=Dalrymple_2004/><ref>Johnson, B. (1993) [http://math.ucr.edu/home/baez/physics/ParticleAndNuclear/decay_rates.html ''How to Change Nuclear Decay Rates'']. Usenet Physics FAQ.</ref>.


== Источники трудностей ==
== Источники трудностей ==
Строка 46: Строка 48:


где:
где:

: <math>D_0</math> — концентрация дочернего изотопа в начальный момент,
: <math>D_0</math> — концентрация дочернего изотопа в начальный момент,

: <math>E_0</math> — концентрация нерадиогенного изотопа того же элемента (не изменяется),
: <math>E_0</math> — концентрация нерадиогенного изотопа того же элемента (не изменяется),

: <math>M_0</math> — концентрация материнского изотопа в начальный момент,
: <math>M_0</math> — концентрация материнского изотопа в начальный момент,

: <math>\Delta{M}</math> — количество материнского изотопа, распавшееся за время <math>t</math> (к моменту измерений).
: <math>\Delta{M}</math> — количество материнского изотопа, распавшееся за время <math>t</math> (к моменту измерений).

В справедливости этого соотношения нетрудно убедиться, сделав сокращение в правой части.
В справедливости этого соотношения нетрудно убедиться, сделав сокращение в правой части.


Строка 71: Строка 68:
Если минерал, [[кристаллическая решётка]] которого не удерживает дочерний нуклид, достаточно сильно разогревается, этот нуклид [[диффузия|диффундирует]] наружу. Таким образом, «радиоизотопные часы» обнуляются: время, прошедшее с этого момента, и получается в результате радиоизотопной датировки. При остывании ниже некоторой температуры диффузия данного нуклида прекращается: минерал становится закрытой системой в отношении этого нуклида. Температура, при которой это происходит, называется {{Iw|температура закрытия|температурой закрытия|en|Closure temperature}}.
Если минерал, [[кристаллическая решётка]] которого не удерживает дочерний нуклид, достаточно сильно разогревается, этот нуклид [[диффузия|диффундирует]] наружу. Таким образом, «радиоизотопные часы» обнуляются: время, прошедшее с этого момента, и получается в результате радиоизотопной датировки. При остывании ниже некоторой температуры диффузия данного нуклида прекращается: минерал становится закрытой системой в отношении этого нуклида. Температура, при которой это происходит, называется {{Iw|температура закрытия|температурой закрытия|en|Closure temperature}}.


Температура закрытия сильно отличается для разных минералов и разных рассматриваемых элементов. Например, [[биотит]] начинает заметно терять [[аргон]] при нагреве до 280±40 °C, а [[циркон]] теряет свинец при температурах >750 °C<ref>Rob Butler 2001. [http://www.see.leeds.ac.uk/structure/dynamicearth/dating/closuredata.htm ''Closure temperatures''] Dynamic Earth. School of Earth and Environment.</ref>.
Температура закрытия сильно отличается для разных минералов и разных рассматриваемых элементов. Например, [[биотит]] начинает заметно терять [[аргон]] при нагреве до 280±40 °C<ref>Rob Butler (2001). [http://www.see.leeds.ac.uk/structure/dynamicearth/dating/closuredata.htm ''Closure temperatures''] Dynamic Earth. School of Earth and Environment.</ref>, а [[циркон]] теряет [[свинец]] при температурах более {{s|950—1000 °C}}<ref name=Scoates_2015/>.


== Методы радиоизотопного датирования ==
== Методы радиоизотопного датирования ==
Строка 78: Строка 75:
=== Уран-свинцовый метод ===
=== Уран-свинцовый метод ===
{{main|Уран-свинцовый метод}}
{{main|Уран-свинцовый метод}}
[[Файл:Laser ablation pit on zircon grain.jpg|thumb|right|Микроскопический кристалл [[циркон]]а, датированный уран-свинцовым методом. Видно лунку от [[лазерная абляция|лазерной абляции]].]]

Уран-свинцовый метод — один из самых старых и хорошо разработанных способов радиоизотопного датирования и, при хорошем исполнении, самый надёжный метод для образцов с возрастом порядка сотен миллионов лет. При таком возрасте достижима точность порядка 0,1 %<ref>Robert Sanders 2004. [http://berkeley.edu/news/media/releases/2004/09/16_uranium.shtml ''Uranium/lead dating provides most accurate date yet for Earth’s largest extinction''] UC Berkeley News</ref>. Позволяет датировать даже образцы, близкие по возрасту к Земле, вследствие большого периода полураспада используемых [[Изотопы урана|изотопов урана]]. Большая надёжность и точность достигается благодаря тому, что используются два изотопа [[Уран (элемент)|урана]], цепочки распада которых кончаются разными изотопами [[Свинец|свинца]], а также благодаря некоторым свойствам [[циркон]]а — минерала, обычно используемого для уран-свинцовых датировок.
Уран-свинцовый метод — один из самых старых и хорошо разработанных способов радиоизотопного датирования и, при хорошем исполнении, самый надёжный метод для образцов с возрастом порядка сотен миллионов лет. Позволяет получить точность в 0,1 % и даже лучше<ref name=Schoene_2014/><ref>Robert Sanders 2004. [http://berkeley.edu/news/media/releases/2004/09/16_uranium.shtml ''Uranium/lead dating provides most accurate date yet for Earth’s largest extinction''] UC Berkeley News</ref>. Датировать можно и образцы, близкие по возрасту к Земле, и образцы младше миллиона лет. Большая надёжность и точность достигаются благодаря использованию двух [[Изотопы урана|изотопов]] [[Уран (элемент)|урана]], цепочки распада которых кончаются разными изотопами [[Свинец|свинца]], а также благодаря некоторым свойствам [[циркон]]а — минерала, обычно используемого для уран-свинцовых датировок.


Используются следующие превращения:
Используются следующие превращения:

: '''[[Уран-238|<sup>238</sup>U]]''' → '''<sup>206</sup>Pb''' с периодом полураспада 4,47 млрд лет (ряд радия — см. [[Радиоактивные ряды]]),
: '''[[Уран-238|<sup>238</sup>U]]''' → '''<sup>206</sup>Pb''' с периодом полураспада 4,47 млрд лет (ряд радия — см. [[Радиоактивные ряды]]),
: '''[[Уран-235|<sup>235</sup>U]]''' → '''<sup>207</sup>Pb''' с периодом полураспада 0,704 млрд лет (ряд актиния).

: '''[[Уран-235|<sup>235</sup>U]]''' → '''<sup>207</sup>Pb''' с периодом полураспада 704 млн лет (ряд актиния).

Иногда в дополнение к ним используют распад [[торий-232|тория-232]] ('''уран-торий-свинцовый метод'''):
Иногда в дополнение к ним используют распад [[торий-232|тория-232]] ('''уран-торий-свинцовый метод'''):
: '''[[торий-232|<sup>232</sup>Th]]''' → '''<sup>208</sup>Pb''' с периодом полураспада 14,0 млрд лет (ряд тория).

: '''[[торий-232|<sup>232</sup>Th]]''' → '''<sup>208</sup>Pb''' с периодом полураспада 14,01 млрд лет (ряд тория).

Все эти превращения идут во много стадий, но промежуточные нуклиды распадаются намного быстрее материнских.
Все эти превращения идут во много стадий, но промежуточные нуклиды распадаются намного быстрее материнских.


Чаще всего для датировок уран-свинцовым методом используют [[циркон]] (ZrSiO<sub>4</sub>); в некоторых случаях — [[монацит]], [[титанит]], [[бадделеит]]<ref name=Dickin_2005/>; реже — многие другие материалы, в том числе [[апатит]], [[кальцит]], [[арагонит]]<ref name=Parrish_2015/>, [[опал]] и [[горные породы]], состоящие из смеси разных минералов. Циркон имеет большую прочность, стойкость к химическим воздействиям, высокую [[Радиоизотопное датирование#Температура закрытия|температуру закрытия]] и широко распространён в [[изверженные породы|извержённых породах]]. В его [[кристаллическая решётка|кристаллическую решётку]] легко встраивается уран и не встраивается свинец, поэтому весь свинец в составе циркона обычно можно считать радиогенным<ref name=Alden/>. В случае надобности количество нерадиогенного свинца можно рассчитать по количеству свинца-204, который не образуется при распаде изотопов урана<ref name="bse">{{Из БСЭ|заглавие=Геохронология|автор=Б. М. Келлер, А. И. Тугаринов, Г. В. Войткевич}}</ref>.
Чаще всего для датировок уран-свинцовым методом используют [[циркон]] (ZrSiO<sub>4</sub>); в некоторых случаях — [[монацит]], [[уранинит]], [[титанит]], [[бадделеит]]<ref name=Rodionov_2009>{{Статья |автор =Родионов Н. В., Беляцкий Б. В., Антонов А. В., Пресняков С. Л., Сергеев С. А. |год=2009 |заглавие=Уран-свинцовый возраст бадделеита (ионный микрозонд SHRIMP-II) и его использование для датирования карбонатитовых массивов |издание=Доклады Академии наук |volume=428 |номер=2 |pages=244-248 |ссылка=http://144.206.159.178/ft/7781/643409/12901862.pdf}}</ref>, [[цирконолит]] (CaZrTi<sub>2</sub>O<sub>7</sub>)<ref name="Alden">Andrew Alden. [http://geology.about.com/od/geotime_dating/a/uraniumlead.htm ''Uranium-Lead Dating''] About.com Geology</ref> и даже [[кальцит]] и [[арагонит]]<ref name=Pickering_2010>{{Статья |автор =Pickering, R., Kramers, J.D., Partridge, T., Kodolanyi, J., Pettke, T. |год=2010 |заглавие=U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS |издание=Quaternary Geochronology |volume=5 |номер=5 |pages=544-558 |ссылка=http://unimelb.academia.edu/RobynPickering/Papers/431547/U-Pb_dating_of_calcite-aragonite_layers_in_speleothems_from_hominin_sites_in_South_Africa_by_MC-ICP-MS}}</ref><ref name="Dickin_2005">{{книга
|автор = Dickin, A.P.
|заглавие = Radiogenic Isotope Geology
|издание = 2-е изд
|место = Cambridge
|издательство = Cambridge University Press
|год = 2005
|страниц = 512
|ссылка = http://books.google.com/books?id=vsxIsLcB_xUC
|isbn = 0-521-82316-1
}}</ref>.
Циркон имеет большую прочность, стойкость к химическим воздействиям, высокую [[Радиоизотопное датирование#Температура закрытия|температуру закрытия]] и широко распространён в извержённых породах. В его [[кристаллическая решётка|кристаллическую решётку]] легко встраивается уран и не встраивается свинец, поэтому весь свинец в составе циркона обычно можно считать радиогенным<ref name="Alden"/>. В случае надобности количество нерадиогенного свинца можно рассчитать по количеству свинца-204, который не образуется при распаде данных изотопов урана<ref name="bse">{{Из БСЭ|заглавие=Геохронология|автор=Б. М. Келлер, А. И. Тугаринов, Г. В. Войткевич}}</ref>.


Использование двух изотопов урана, распадающихся до разных изотопов свинца, даёт возможность определить возраст объекта даже в случае потери им некоторой части свинца (например, вследствие метаморфизма). Кроме того, можно определить возраст этого события метаморфизма.
Использование двух изотопов урана, распадающихся до разных изотопов свинца, даёт возможность определить возраст объекта даже в случае потери им некоторой части свинца (например, вследствие [[метаморфизм]]а). Кроме того, можно определить возраст этого события метаморфизма.


=== Свинец-свинцовый метод ===
=== Свинец-свинцовый метод ===
Строка 116: Строка 97:
: <math>{\left[^{206}\mathrm{Pb}\right]_{t}} = {\left[^{206}\mathrm{Pb}\right]_{0}} + {\left[^{238}\mathrm{U}\right]_{0}} {\left({e^{\lambda_{238}t}-1}\right)} </math>,
: <math>{\left[^{206}\mathrm{Pb}\right]_{t}} = {\left[^{206}\mathrm{Pb}\right]_{0}} + {\left[^{238}\mathrm{U}\right]_{0}} {\left({e^{\lambda_{238}t}-1}\right)} </math>,


где индекс <math>t</math> означает концентрацию изотопа в момент измерений, а индекс <math>0</math> — в начальный момент.
где индекс <math>t</math> означает концентрацию изотопа в момент измерений, а индекс <math>0</math> — в начальный момент.


Удобно использовать не сами концентрации, а их отношения к концентрации нерадиогенного изотопа <sup>204</sup>Pb.<br />
Удобно использовать не сами концентрации, а их отношения к концентрации нерадиогенного изотопа <sup>204</sup>Pb.<br>
Опуская квадратные скобки:
Опуская квадратные скобки:


Строка 125: Строка 106:
: <math>{\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{t}} = {\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{0}} + {\left(\frac{^{238}\mathrm{U}}{^{204}\mathrm{Pb}}\right)} {\left({e^{\lambda_{238}t}-1}\right)} </math>
: <math>{\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{t}} = {\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{0}} + {\left(\frac{^{238}\mathrm{U}}{^{204}\mathrm{Pb}}\right)} {\left({e^{\lambda_{238}t}-1}\right)} </math>


Разделив первое из этих уравнений на второе и учитывая, что современное отношение концентраций материнских изотопов урана <sup>238</sup>U/<sup>235</sup>U равно 137,88 для всех геологических объектов (единственное известное исключение [[природный ядерный реактор в Окло]]), получим:
Разделив первое из этих уравнений на второе и учитывая, что современное отношение концентраций материнских изотопов урана <sup>238</sup>U/<sup>235</sup>U почти одинаково для всех геологических объектов (принятое значение — 137,88),<ref group="Комм.">Современные исследования показывают, что среднее для земных пород соотношение <math>^{238}\mathrm{U}/^{235}\mathrm{U}</math> немного меньше рекомендованного Подкомиссией по геохронологии [[Международный союз геологических наук|Международного союза геологических наук]] в 1979 году значения 137,88 и составляет около 137,82, причём в разных образцах оно отличается на сотые и даже десятые доли процента. [[Природный ядерный реактор в Окло]] — единственный известный пример существенно большего отклонения.</ref><ref name=White_3/><ref name=Parrish_2015/><ref name=Schoene_2014/> получим:


: <math>\frac{\left(\frac{^{207}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{t}-\left(\frac{^{207}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{0}}{\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{t}-\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{0}}= {\left(\frac{1}{137,88}\right)}{\left(\frac{e^{\lambda_{235}t}-1}{e^{\lambda_{238}t}-1}\right)}</math>
: <math>\frac{\left(\frac{^{207}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{t}-\left(\frac{^{207}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{0}}{\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{t}-\left(\frac{^{206}\mathrm{Pb}}{^{204}\mathrm{Pb}}\right)_{0}}= {\left(\frac{1}{137,88}\right)}{\left(\frac{e^{\lambda_{235}t}-1}{e^{\lambda_{238}t}-1}\right)}</math>
Строка 131: Строка 112:
Далее строится график с отношениями <sup>207</sup>Pb/<sup>204</sup>Pb и <sup>206</sup>Pb/<sup>204</sup>Pb по осям. На этом графике точки, соответствующие образцам с разным исходным соотношением U/Pb, будут выстраиваться вдоль прямой (изохроны), наклон которой показывает возраст образца.
Далее строится график с отношениями <sup>207</sup>Pb/<sup>204</sup>Pb и <sup>206</sup>Pb/<sup>204</sup>Pb по осям. На этом графике точки, соответствующие образцам с разным исходным соотношением U/Pb, будут выстраиваться вдоль прямой (изохроны), наклон которой показывает возраст образца.


Свинец-свинцовым методом было определено время формирования планет Солнечной системы (то есть [[возраст Земли]]). Это впервые сделал [[Паттерсон, Клэр|Клэр Кэмерон Паттерсон]] в 1956 году по исследованиям [[метеорит]]ов разных типов. Поскольку они представляют собой осколки [[Планетезималь|планетезималей]], которые прошли гравитационную дифференциацию, разные метеориты имеют разное значение U/Pb, что позволяет построить изохрону. Оказалось, что на эту изохрону ложится и точка, представляющая среднее соотношение изотопов свинца для Земли. Современное значение возраста Земли — 4,54 ± 0,05 млрд лет<ref name="Dickin_2005"/>.
Свинец-свинцовым методом было определено время формирования планет Солнечной системы (то есть [[возраст Земли]]). Это впервые сделал [[Паттерсон, Клэр|Клэр Кэмерон Паттерсон]] в 1956 году по исследованиям [[метеорит]]ов разных типов. Поскольку они представляют собой осколки [[Планетезималь|планетезималей]], которые прошли [[гравитационная дифференциация|гравитационную дифференциацию]], разные метеориты имеют разное значение U/Pb, что позволяет построить изохрону. Оказалось, что на эту изохрону ложится и точка, представляющая среднее соотношение изотопов свинца для Земли. Современное значение возраста Земли — 4,54 ± 0,05 млрд лет<ref name="Dickin_2005"/>.


=== Калий-аргоновый метод ===
=== Калий-аргоновый метод ===
Строка 148: Строка 129:
Основная проблема для калий-аргонового датирования, как и для других радиоизотопных методов, — обмен веществом с окружающей средой и трудности определения начального состава образца. Важно, чтобы образец в начальный момент не содержал аргон, а потом не терял его и не загрязнялся атмосферным аргоном. На это загрязнение можно сделать поправку, исходя из того, что в атмосферном аргоне есть, кроме <sup>40</sup>Ar, и другой изотоп (<sup>36</sup>Ar), но из-за малости его количества (1/295 всего аргона) точность этой поправка невелика.
Основная проблема для калий-аргонового датирования, как и для других радиоизотопных методов, — обмен веществом с окружающей средой и трудности определения начального состава образца. Важно, чтобы образец в начальный момент не содержал аргон, а потом не терял его и не загрязнялся атмосферным аргоном. На это загрязнение можно сделать поправку, исходя из того, что в атмосферном аргоне есть, кроме <sup>40</sup>Ar, и другой изотоп (<sup>36</sup>Ar), но из-за малости его количества (1/295 всего аргона) точность этой поправка невелика.


Есть усовершенствованный вариант калий-аргонового метода — <sup>40</sup>Ar/<sup>39</sup>Ar-метод ('''аргон-аргоновый метод'''). По этому методу вместо содержания <sup>40</sup>K определяется содержание <sup>39</sup>Ar, который образуется из <sup>39</sup>K при искусственном [[Нейтронное излучение|облучении нейтронами]]. Количество <sup>40</sup>K можно однозначно определить из количества <sup>39</sup>K за счёт постоянства изотопного состава калия. Преимущество этого способа связано с тем, что химические свойства <sup>39</sup>Ar и <sup>40</sup>Ar идентичны, так что содержание этих изотопов можно определить из одной навески образца одним и тем же способом. Но каждая аргон-аргоновая датировка требует калибровки с помощью образца известного возраста, облучённого тем же потоком нейтронов<ref name="titaeva_2000">{{книга
Есть усовершенствованный вариант калий-аргонового метода — <sup>40</sup>Ar/<sup>39</sup>Ar-метод ('''аргон-аргоновый метод'''). По этому методу вместо содержания <sup>40</sup>K определяется содержание <sup>39</sup>Ar, который образуется из <sup>39</sup>K при искусственном [[Нейтронное излучение|облучении нейтронами]]. Количество <sup>40</sup>K можно однозначно определить из количества <sup>39</sup>K за счёт постоянства изотопного состава калия. Преимущество этого способа связано с тем, что химические свойства <sup>39</sup>Ar и <sup>40</sup>Ar идентичны, так что содержание этих изотопов можно определить из одной навески образца одним и тем же способом. Но каждая аргон-аргоновая датировка требует калибровки с помощью образца известного возраста, облучённого тем же потоком нейтронов<ref name=Titaeva_2000/><ref name="New_Mexico_K_Ar">[http://geoinfo.nmt.edu/labs/argon/methods/home.html K/Ar and <sup>40</sup>Ar/<sup>39</sup>Ar Methods — The New Mexico Bureau of Geology & Mineral Resources]</ref>.
|автор = Титаева Н. А.
|заглавие = Ядерная геохимия: Учебник
|издание = 2-е изд
|место = М.
|издательство = Издательство МГУ
|год = 2000
|страницы = 99—102
|страниц = 336
|isbn = 5-211-02564-4
}}</ref><ref name="New_Mexico_K_Ar">[http://geoinfo.nmt.edu/labs/argon/methods/home.html K/Ar and <sup>40</sup>Ar/<sup>39</sup>Ar Methods — The New Mexico Bureau of Geology & Mineral Resources]</ref>.


Сравнение калий-аргоновых датировок с уран-свинцовыми показывает, что калий-аргоновые обычно меньше примерно на 1 %. Вероятно, это объясняется неточностью принятого значения периода полураспада калия-40<ref name="Dickin_2005"/>.
Сравнение калий-аргоновых датировок с уран-свинцовыми показывает, что калий-аргоновые обычно меньше примерно на 1 %. Вероятно, это объясняется неточностью принятого значения периода полураспада калия-40<ref name="Dickin_2005"/>.


=== Радиоуглеродный метод ===
=== Радиоуглеродный метод ===
Строка 168: Строка 139:


== Примечания ==
== Примечания ==
;Комментарии
{{примечания}}
{{примечания|group="Комм."}}

;Источники
== Литература ==
{{примечания|2|refs=
* {{книга
<ref name=Alden>Andrew Alden. [http://geology.about.com/od/geotime_dating/a/uraniumlead.htm ''Uranium-Lead Dating''] About.com Geology</ref>
<ref name=Boltwood_1907>{{cite journal
|title =On the Ultimate Disintegration Products of the Radio-active Elements. Part II. The Disintegration Products of Uranium
|author =Boltwood B.
|date =1907
|journal=American Journal of Science
|volume =23, ser.4
|pages =77–88
|doi =10.2475/ajs.s4-23.134.78
}}</ref>
<ref name=Dalrymple_1994>{{книга
|автор = Dalrymple G. B.
|часть = Early Appeals to Radioactivity
|заглавие = The Age of the Earth
|ссылка часть = http://books.google.com/books?id=a7S3zaLBrkgC&pg=PA69
|издательство = Stanford University Press
|год = 1994
|pages = 69–74
|allpages = 474
|isbn = 9780804723312
}}</ref>
<ref name=Dalrymple_2004>{{книга
|автор = G. Brent Dalrymple
|заглавие = Ancient Earth, Ancient Skies
|ссылка = http://books.google.com/books?id=TNxo_TDGpH0C&pg=PA60
|издательство = Stanford University Press
|год = 2004
|pages = 58–60
|allpages = 247
|isbn = 9780804749336
}}</ref>
<ref name=Dickin_2005>{{книга
|автор = Dickin A. P.
|заглавие = Radiogenic Isotope Geology
|издание = 2nd ed
|издательство = Cambridge University Press
|год = 2005
|pages = 29–31, 101–135, 275, 324–382
|allpages = 512
|ссылка = http://books.google.com/books?id=vsxIsLcB_xUC&pg=PA101
|isbn = 0-521-82316-1
}}</ref>
<ref name=Lewis_2002>{{книга
|автор = Lewis C. L. E.
|часть = Arthur Holmes' unifying theory: from radioactivity to continental drift
|заглавие = The Earth Inside and Out: Some Major Contributions to Geology in the Twentieth Century
|ссылка часть = http://books.google.com/books?id=PFc_SE4dqVMC&pg=PA168&dq=1904
|ответственный = D. R. Oldroyd
|издательство = Geological Society of London
|серия = Geological Society special publication 192
|год = 2002
|pages = 168
|allpages = 369
|isbn = 9781862390966
}}</ref>
<ref name=Mattinson_2013_tgr>{{книга
|автор = Mattinson J. M.
|часть = The geochronology revolution
|заглавие = The Web of Geological Sciences: Advances, Impacts, and Interactions
|ссылка часть = http://books.google.com/books?id=PUypAAAAQBAJ&pg=PA304&dq=lecture
|ответственный = M. E. Bickford
|издательство = Geological Society of America
|серия = Geological Society of America special paper 500
|год = 2013
|pages = 304
|allpages = 611
|isbn = 9780813725000
}}</ref>
<ref name=Parrish_2015>{{публикация|книга
|автор = Parrish R.
|часть = Uranium–Lead Dating
|заглавие = Encyclopedia of Scientific Dating Methods
|ответственный = W. J. Rink, J. W. Thompson
|издательство = Springer Netherlands
|год = 2015
|pages = 848–857
|allpages = 978
|isbn = 978-94-007-6304-3
|doi = 10.1007/978-94-007-6304-3_193
}}</ref>
<ref name=Rutherford_1906>{{публикация|книга
|автор = Rutherford E.
|часть = Present Problems of Radioactivity
|заглавие = International Congress of Arts and Science. Vol. IV
|ссылка часть = https://archive.org/stream/internationalcon04cong#page/185/mode/1up
|ответственный = H. J. Rogers
|издательство = University Alliance
|год = 1906
|pages = 185–186
|doi = 10.5962/bhl.title.43866
}}</ref>
<ref name=Scoates_2015>{{книга
|автор = Scoates J. S., Wall C. J.
|часть = Geochronology of Layered Intrusions
|заглавие = Layered Intrusions
|ссылка часть = http://books.google.com/books?id=rGl1CQAAQBAJ&pg=PA25&dq=closure
|ответственный = B. Charlier, O. Namur, R. Latypov, Ch. Tegner
|издательство = Springer
|год = 2015
|pages = 23–28
|allpages = 748
|isbn = 9789401796521
}}</ref>
<ref name=Schoene_2014>{{публикация|книга
|автор = Schoene B.
|часть = 4.10. U–Th–Pb Geochronology
|заглавие = Treatise on Geochemistry
|ссылка часть = http://web.archive.org/web/20160305070912/http://www.princeton.edu/geosciences/people/schoene/pdf/4_10_Schoene_UThPb_geochronology.pdf
|ответственный = H. Holland, K. Turekian
|издательство = Elsevier
|издание = 2nd ed
|год = 2014
|volume = 4: The Crust
|pages = 341–378
|isbn = 978-0-08-098300-4
|doi = 10.1016/B978-0-08-095975-7.00310-7
}}</ref>
<ref name=Titaeva_2000>{{книга
|автор = Титаева Н. А.
|автор = Титаева Н. А.
|заглавие = Ядерная геохимия: Учебник
|заглавие = Ядерная геохимия: Учебник
Строка 178: Строка 267:
|издательство = Издательство МГУ
|издательство = Издательство МГУ
|год = 2000
|год = 2000
|страницы = 99—102
|страниц = 336
|страниц = 336
|isbn = 5-211-02564-4
|isbn = 5-211-02564-4
}}</ref>
<ref name=White_2_1>{{книга
|автор = White W. M.
|часть = 2.1. Basics of Radioactive Isotope Geochemistry
|заглавие = Isotope Geochemistry
|ссылка часть = http://books.google.com/books?id=3-aNBQAAQBAJ&pg=PA32&dq=uranium
|издательство = John Wiley & Sons
|год = 2015
|pages = 32–33
|allpages = 496
|isbn = 978-0-470-65670-9
}} ([http://www.geo.cornell.edu/geology/classes/Geo656/656notes13/IsotopeGeochemistry%20Chapter2.pdf pdf]).</ref>
<ref name=White_3>{{книга
|автор = White W. M.
|часть = 3. Decay systems and geochronology II: U and Th
|заглавие = Isotope Geochemistry
|ссылка часть = http://books.google.com/books?id=3-aNBQAAQBAJ&pg=PA72
|издательство = John Wiley & Sons
|год = 2015
|pages = 72–100
|allpages = 496
|isbn = 978-0-470-65670-9
}} ([http://www.geo.cornell.edu/geology/classes/Geo656/656notes13/IsotopeGeochemistry%20Chapter3.pdf pdf]).</ref>
}}

== Литература ==
* {{публикация|книга
|заглавие = Encyclopedia of Scientific Dating Methods
|ответственный = W. J. Rink, J. W. Thompson
|издательство = Springer Netherlands
|год = 2015
|allpages = 978
|isbn = 978-94-007-6304-3
|doi = 10.1007/978-94-007-6304-3
}}
}}
* {{книга
* {{книга
|автор = Dickin, A.P.
|автор = Dickin A. P.
|заглавие = Radiogenic Isotope Geology
|заглавие = Radiogenic Isotope Geology
|издание = 2-е изд
|издание = 2nd ed
|место = Cambridge
|издательство = Cambridge University Press
|издательство = Cambridge University Press
|год = 2005
|год = 2005
|страниц = 512
|allpages = 512
|ссылка = http://books.google.com/books?id=vsxIsLcB_xUC
|ссылка = http://books.google.com/books?id=vsxIsLcB_xUC
|isbn = 0-521-82316-1
|isbn = 0-521-82316-1
}}
}}
* {{книга
|автор = Титаева Н. А.
|заглавие = Ядерная геохимия: Учебник
|издание = 2-е изд
|место = М.
|издательство = Издательство МГУ
|год = 2000
|страниц = 336
|isbn = 5-211-02564-4
}}

== Ссылки ==
{{навигация}}
* ''Ишханов Б. С.'' [http://nuclphys.sinp.msu.ru/radioactivity/ract17.htm Основы геологии. 17. Ядерная хронология]
* ''Ишханов Б. С.'' [http://nuclphys.sinp.msu.ru/radioactivity/ract17.htm Основы геологии. 17. Ядерная хронология]
* ''Короновский Н. В.'', ''Якушова А. Ф.'' [http://geo.web.ru/db/msg.html?mid=1163814&uri=part18-02.htm Основы геологии. 18.2. Абсолютная геохронология]
* ''Короновский Н. В.'', ''Якушова А. Ф.'' [http://geo.web.ru/db/msg.html?mid=1163814&uri=part18-02.htm Основы геологии. 18.2. Абсолютная геохронология]

Версия от 00:25, 19 февраля 2017

Радиоизото́пное или радиометри́ческое дати́рование — метод определения возраста различных объектов, в составе которых есть какой-либо радиоактивный изотоп. Основан на определении того, какая доля этого изотопа успела распасться за время существования образца. По этой величине, зная период полураспада данного изотопа, можно рассчитать возраст образца.

Радиоизотопное датирование широко применяется в геологии, палеонтологии, археологии и других науках. Это источник практически всех абсолютных датировок различных событий истории Земли. До его появления были возможны только относительные датировки — привязка к определённым геологическим эрам, периодам, эпохам и т. д., длительность которых была неизвестна.

В различных методах радиоизотопного датирования используются разные изотопы разных элементов. Поскольку они сильно отличаются по химическим свойствам (и, следовательно, по содержанию в различных геологических и биологических материалах и по поведению в геохимических циклах), а также по периоду полураспада, у разных методов отличается область применимости. Каждый метод применим только к определённым материалам и определённому интервалу возрастов. Самые известные методы радиоизотопного датирования — это радиоуглеродный, калий-аргоновый и уран-свинцовый анализ.

История

Идею радиоизотопного датирования предложил Эрнест Резерфорд в 1904 году, через 8 лет после открытия радиоактивности Анри Беккерелем. Тогда же он сделал первую попытку определить возраст минерала по содержанию урана и гелия[Комм. 1][1][2][3]. Уже через 2 года, в 1907, Бертрам Болтвуд, радиохимик из Йельского университета, опубликовал первые уран-свинцовые датировки ряда образцов урановой руды и получил значения возраста от 410 до 2200 млн лет[4]. Результат имел большое значение: он показал, что возраст Земли во много раз больше 20-40 млн лет, полученных десятью годами ранее Уильямом Томсоном на основании скорости остывания планеты. Однако тогда не было известно про образование части свинца в результате распада тория и даже про существование изотопов, и поэтому оценки Болтвуда обычно были завышены на десятки процентов, иногда почти вдвое[5][6].

В последующие годы шло интенсивное развитие ядерной физики и усовершенствование технологий, благодаря чему к середине 20 века была достигнута хорошая точность радиоизотопных датировок. Этому особенно помогло изобретение масс-спектрометра[7]. В 1949 году Уиллард Либби разработал радиоуглеродный анализ и продемонстрировал его пригодность на образцах дерева известного возраста (в интервале 1400 — 4600 лет)[8], за что в 1960 году получил Нобелевскую премию по химии.

Физические основы

Количество любого радиоактивного изотопа уменьшается со временем по экспоненциальному закону (закон радиоактивного распада):

,

где:

 — количество атомов в начальный момент,
 — количество атомов по прошествии времени ,
 — постоянная распада.

Таким образом, каждый изотоп имеет строго определённый период полураспада — время, за которое его количество уменьшается вдвое. Период полураспада связан с постоянной распада следующим образом:

Тогда можно выразить отношение через период полураспада:

Исходя из того, какая часть радиоизотопа распалась за некоторое время, можно рассчитать это время:

Период полураспада не зависит от температуры, давления, химического окружения, интенсивности электромагнитных полей. Единственное известное исключение относится к тем изотопам, которые распадаются путём электронного захвата: у них есть зависимость скорости распада от электронной плотности в районе ядра. К таким относятся, например, бериллий-7, стронций-85 и цирконий-89. У таких радиоизотопов скорость распада зависит от степени ионизации атома; есть также слабая зависимость от давления и температуры. Существенной проблемой для радиоизотопного датирования это не является[9][10].

Источники трудностей

Главные источники трудностей для радиоизотопного датирования — это обмен веществом между исследуемым объектом и окружающей средой, который мог происходить после образования объекта, и неопределённость начального изотопного и элементного состава. Если на момент образования объекта в нём уже было некоторое количество дочернего изотопа, рассчитанный возраст может быть завышен, а если впоследствии дочерний изотоп покидал объект — занижен. Для радиоуглеродного метода важно, чтобы не было нарушенным соотношение изотопов углерода в начальный момент, так как содержание продукта распада — 14N — невозможно узнать (он ничем не отличается от обычного азота), и возраст можно определить только исходя из измерений нераспавшейся доли материнского изотопа. Таким образом, необходимо как можно более точное изучение истории исследуемого объекта на предмет возможного обмена веществом с окружающей средой и возможных особенностей изотопного состава.

Метод изохрон

Решить проблемы, связанные с привносом или потерей материнского или дочернего изотопа, помогает метод изохрон. Он работает независимо от изначального количества дочернего изотопа и позволяет установить, был ли в истории объекта обмен веществом с окружающей средой.

Этот метод основан на сравнении данных по разным образцам из одного геологического объекта, которые имеют заведомо одинаковый возраст, но отличаются элементным составом (следовательно, содержанием материнского радионуклида). Изотопный же состав каждого элемента в начальный момент должен быть одинаковым во всех образцах. Также эти образцы должны содержать вместе с дочерним изотопом какой-либо другой изотоп того же элемента. Образцы могут представлять как разные минералы из одного куска горной породы, так и разные части одного геологического тела.

Тогда для каждого образца выполняется:

,

где:

 — концентрация дочернего изотопа в начальный момент,
 — концентрация нерадиогенного изотопа того же элемента (не изменяется),
 — концентрация материнского изотопа в начальный момент,
 — количество материнского изотопа, распавшееся за время (к моменту измерений).

В справедливости этого соотношения нетрудно убедиться, сделав сокращение в правой части.

Концентрация дочернего изотопа на момент измерений будет , а концентрация материнского . Тогда:

Отношения и можно измерить. После этого строится график, где эти величины откладываются по ординатам и абсциссам соответственно.

Если в истории образцов не было обмена веществом с окружающей средой, то соответствующие им точки на этом графике ложатся на прямую линию, потому что коэффициент и слагаемое одинаковы для всех образцов (а отличаются эти образцы только изначальным содержанием материнского изотопа). Эта линия называется изохроной. Чем больше наклон изохроны, тем больше возраст исследуемого объекта. Если обмен веществом в истории объекта был, точки не лежат на одной прямой и это показывает, что в данном случае определение возраста ненадёжно.

Метод изохрон применяется в разных радиоизотопных методах датировки, таких как рубидий-стронциевый, самарий-неодимовый и уран-свинцовый.

Температура закрытия

Если минерал, кристаллическая решётка которого не удерживает дочерний нуклид, достаточно сильно разогревается, этот нуклид диффундирует наружу. Таким образом, «радиоизотопные часы» обнуляются: время, прошедшее с этого момента, и получается в результате радиоизотопной датировки. При остывании ниже некоторой температуры диффузия данного нуклида прекращается: минерал становится закрытой системой в отношении этого нуклида. Температура, при которой это происходит, называется температурой закрытия[англ.].

Температура закрытия сильно отличается для разных минералов и разных рассматриваемых элементов. Например, биотит начинает заметно терять аргон при нагреве до 280±40 °C[11], а циркон теряет свинец при температурах более 950—1000 °C[12].

Методы радиоизотопного датирования

Используются разные радиоизотопные методы, которые годятся для разных материалов, разных интервалов возраста и имеют разную точность.

Уран-свинцовый метод

Микроскопический кристалл циркона, датированный уран-свинцовым методом. Видно лунку от лазерной абляции.

Уран-свинцовый метод — один из самых старых и хорошо разработанных способов радиоизотопного датирования и, при хорошем исполнении, самый надёжный метод для образцов с возрастом порядка сотен миллионов лет. Позволяет получить точность в 0,1 % и даже лучше[13][14]. Датировать можно и образцы, близкие по возрасту к Земле, и образцы младше миллиона лет. Большая надёжность и точность достигаются благодаря использованию двух изотопов урана, цепочки распада которых кончаются разными изотопами свинца, а также благодаря некоторым свойствам циркона — минерала, обычно используемого для уран-свинцовых датировок.

Используются следующие превращения:

238U206Pb с периодом полураспада 4,47 млрд лет (ряд радия — см. Радиоактивные ряды),
235U207Pb с периодом полураспада 0,704 млрд лет (ряд актиния).

Иногда в дополнение к ним используют распад тория-232 (уран-торий-свинцовый метод):

232Th208Pb с периодом полураспада 14,0 млрд лет (ряд тория).

Все эти превращения идут во много стадий, но промежуточные нуклиды распадаются намного быстрее материнских.

Чаще всего для датировок уран-свинцовым методом используют циркон (ZrSiO4); в некоторых случаях — монацит, титанит, бадделеит[15]; реже — многие другие материалы, в том числе апатит, кальцит, арагонит[16], опал и горные породы, состоящие из смеси разных минералов. Циркон имеет большую прочность, стойкость к химическим воздействиям, высокую температуру закрытия и широко распространён в извержённых породах. В его кристаллическую решётку легко встраивается уран и не встраивается свинец, поэтому весь свинец в составе циркона обычно можно считать радиогенным[17]. В случае надобности количество нерадиогенного свинца можно рассчитать по количеству свинца-204, который не образуется при распаде изотопов урана[18].

Использование двух изотопов урана, распадающихся до разных изотопов свинца, даёт возможность определить возраст объекта даже в случае потери им некоторой части свинца (например, вследствие метаморфизма). Кроме того, можно определить возраст этого события метаморфизма.

Свинец-свинцовый метод

Свинец-свинцовый метод обычно используется для определения возраста образцов, состоящих из смеси минералов (его преимущество в таких случаях перед уран-свинцовым методом связано с высокой подвижностью урана). Этот метод хорошо подходит для датировки метеоритов, а также земных пород, испытавших недавнюю потерю урана. Он основан на измерении содержания 3 изотопов свинца: 206Pb (образуется при распаде 238U), 207Pb (образуется при распаде 235U) и 204Pb (нерадиогенный).

Изменение со временем соотношения концентраций изотопов свинца выводится из следующих уравнений:

,

где индекс означает концентрацию изотопа в момент измерений, а индекс  — в начальный момент.

Удобно использовать не сами концентрации, а их отношения к концентрации нерадиогенного изотопа 204Pb.
Опуская квадратные скобки:

Разделив первое из этих уравнений на второе и учитывая, что современное отношение концентраций материнских изотопов урана 238U/235U почти одинаково для всех геологических объектов (принятое значение — 137,88),[Комм. 2][19][16][13] получим:

Далее строится график с отношениями 207Pb/204Pb и 206Pb/204Pb по осям. На этом графике точки, соответствующие образцам с разным исходным соотношением U/Pb, будут выстраиваться вдоль прямой (изохроны), наклон которой показывает возраст образца.

Свинец-свинцовым методом было определено время формирования планет Солнечной системы (то есть возраст Земли). Это впервые сделал Клэр Кэмерон Паттерсон в 1956 году по исследованиям метеоритов разных типов. Поскольку они представляют собой осколки планетезималей, которые прошли гравитационную дифференциацию, разные метеориты имеют разное значение U/Pb, что позволяет построить изохрону. Оказалось, что на эту изохрону ложится и точка, представляющая среднее соотношение изотопов свинца для Земли. Современное значение возраста Земли — 4,54 ± 0,05 млрд лет[15].

Калий-аргоновый метод

В этом методе используется распад изотопа 40K, который составляет 0,012 % природного калия. Он распадается в основном двумя способами:

Период полураспада 40K с учётом обоих путей распада равен 1,25 млрд лет. Это позволяет датировать и образцы с возрастом, равным возрасту Земли, и образцы с возрастом в сотни, а иногда и десятки тысяч лет[15].

Калий — 7-й по содержанию элемент в земной коре, и многие извержённые и осадочные породы содержат большое количество этого элемента. Доля изотопа 40K в нём постоянна с хорошей точностью[15]. Для калий-аргонового датирования используются различные слюды, застывшая лава, полевые шпаты, глинистые минералы, а также многие другие минералы и горные породы. Застывшая лава годится и для палеомагнитных исследований. Поэтому калий-аргоновый метод (точнее, его разновидность — аргон-аргоновый метод) — основной метод калибровки шкалы геомагнитной полярности[15][20].

Основной продукт распада 40K — 40Ca — ничем не отличается от обычного (нерадиогенного) кальция-40, которого в исследуемых породах, как правило, много. Поэтому обычно анализируют содержание другого дочернего изотопа — 40Ar. Поскольку аргон — это инертный газ, он легко улетучивается из пород при нагреве до нескольких сотен градусов. Соответственно, калий-аргоновая датировка показывает время последнего разогрева образца до таких температур[15].

Основная проблема для калий-аргонового датирования, как и для других радиоизотопных методов, — обмен веществом с окружающей средой и трудности определения начального состава образца. Важно, чтобы образец в начальный момент не содержал аргон, а потом не терял его и не загрязнялся атмосферным аргоном. На это загрязнение можно сделать поправку, исходя из того, что в атмосферном аргоне есть, кроме 40Ar, и другой изотоп (36Ar), но из-за малости его количества (1/295 всего аргона) точность этой поправка невелика.

Есть усовершенствованный вариант калий-аргонового метода — 40Ar/39Ar-метод (аргон-аргоновый метод). По этому методу вместо содержания 40K определяется содержание 39Ar, который образуется из 39K при искусственном облучении нейтронами. Количество 40K можно однозначно определить из количества 39K за счёт постоянства изотопного состава калия. Преимущество этого способа связано с тем, что химические свойства 39Ar и 40Ar идентичны, так что содержание этих изотопов можно определить из одной навески образца одним и тем же способом. Но каждая аргон-аргоновая датировка требует калибровки с помощью образца известного возраста, облучённого тем же потоком нейтронов[21][22].

Сравнение калий-аргоновых датировок с уран-свинцовыми показывает, что калий-аргоновые обычно меньше примерно на 1 %. Вероятно, это объясняется неточностью принятого значения периода полураспада калия-40[15].

Радиоуглеродный метод

Метод основан на распаде углерода-14 и применяется для объектов биологического происхождения. Он позволяет определить время, прошедшее с момента гибели биологического объекта и прекращения обмена углеродом с атмосферным резервуаром. Отношение содержания углерода-14 к стабильному углероду (14C/12C ~ 10−10%) в атмосфере и в тканях животных и растений, находящихся в равновесном обмене с ней, определяется потоком быстрых нейтронов в верхней атмосфере. Нейтроны, создаваемые космическими лучами, реагируют с ядрами атмосферного азота-14 по реакции образуя в среднем около 7,5 кг углерода-14 в год. Период полураспада 14С равен 5730±40 лет; существующие методики позволяют определять концентрации радиоуглерода в биообъектах на уровне приблизительно в 1000 раз меньше равновесной атмосферной концентрации, то есть с возрастом до 10 периодов полураспада 14С (около 60 тыс. лет).

Примечания

Комментарии
  1. Оценка Резерфорда основывалась на данных Рамзая и Траверса по содержанию урана и гелия в фергусоните (о том, что из урана образуется не только гелий, но и намного лучше подходящий для датировок свинец, ещё не было известно). Она составляла 40 млн лет; в следующем году Резерфорд пересмотрел её с учётом уточнённой скорости образования гелия и получил 500 млн лет.
  2. Современные исследования показывают, что среднее для земных пород соотношение немного меньше рекомендованного Подкомиссией по геохронологии Международного союза геологических наук в 1979 году значения 137,88 и составляет около 137,82, причём в разных образцах оно отличается на сотые и даже десятые доли процента. Природный ядерный реактор в Окло — единственный известный пример существенно большего отклонения.
Источники
  1. Lewis C. L. E. Arthur Holmes' unifying theory: from radioactivity to continental drift // The Earth Inside and Out: Some Major Contributions to Geology in the Twentieth Century / D. R. Oldroyd. — Geological Society of London, 2002. — P. 168. — 369 p. — (Geological Society special publication 192). — ISBN 9781862390966.
  2. Mattinson J. M. The geochronology revolution // The Web of Geological Sciences: Advances, Impacts, and Interactions / M. E. Bickford. — Geological Society of America, 2013. — P. 304. — 611 p. — (Geological Society of America special paper 500). — ISBN 9780813725000.
  3. Rutherford E. Present Problems of Radioactivity // International Congress of Arts and Science. Vol. IV / H. J. Rogers. — University Alliance, 1906. — P. 185–186. — doi:10.5962/bhl.title.43866.
  4. Boltwood B. (1907). "On the Ultimate Disintegration Products of the Radio-active Elements. Part II. The Disintegration Products of Uranium". American Journal of Science. 23, ser.4: 77—88. doi:10.2475/ajs.s4-23.134.78.
  5. Dalrymple G. B. Early Appeals to Radioactivity // The Age of the Earth. — Stanford University Press, 1994. — P. 69–74. — 474 p. — ISBN 9780804723312.
  6. White W. M. 2.1. Basics of Radioactive Isotope Geochemistry // Isotope Geochemistry. — John Wiley & Sons, 2015. — P. 32–33. — 496 p. — ISBN 978-0-470-65670-9. (pdf).
  7. Geologic Time: Radiometric Time Scale. United States Geological Survey (16 июня 2001). Архивировано 29 октября 2012 года.
  8. Arnold, J. R. (1949). "Age Determinations by Radiocarbon Content: Checks with Samples of Known Age". Science. 110 (2869): 678—680. Bibcode:1949Sci...110..678A. doi:10.1126/science.110.2869.678. PMID 15407879. {{cite journal}}: Неизвестный параметр |coauthors= игнорируется (|author= предлагается) (справка)
  9. G. Brent Dalrymple. Ancient Earth, Ancient Skies. — Stanford University Press, 2004. — P. 58–60. — 247 p. — ISBN 9780804749336.
  10. Johnson, B. (1993) How to Change Nuclear Decay Rates. Usenet Physics FAQ.
  11. Rob Butler (2001). Closure temperatures Dynamic Earth. School of Earth and Environment.
  12. Scoates J. S., Wall C. J. Geochronology of Layered Intrusions // Layered Intrusions / B. Charlier, O. Namur, R. Latypov, Ch. Tegner. — Springer, 2015. — P. 23–28. — 748 p. — ISBN 9789401796521.
  13. 1 2 Schoene B. 4.10. U–Th–Pb Geochronology // Treatise on Geochemistry / H. Holland, K. Turekian. — 2nd ed. — Elsevier, 2014. — Vol. 4: The Crust. — P. 341–378. — ISBN 978-0-08-098300-4. — doi:10.1016/B978-0-08-095975-7.00310-7.
  14. Robert Sanders 2004. Uranium/lead dating provides most accurate date yet for Earth’s largest extinction UC Berkeley News
  15. 1 2 3 4 5 6 7 Dickin A. P. Radiogenic Isotope Geology. — 2nd ed. — Cambridge University Press, 2005. — P. 29–31, 101–135, 275, 324–382. — 512 p. — ISBN 0-521-82316-1.
  16. 1 2 Parrish R. Uranium–Lead Dating // Encyclopedia of Scientific Dating Methods / W. J. Rink, J. W. Thompson. — Springer Netherlands, 2015. — P. 848–857. — 978 p. — ISBN 978-94-007-6304-3. — doi:10.1007/978-94-007-6304-3_193.
  17. Andrew Alden. Uranium-Lead Dating About.com Geology
  18. Геохронология — статья из Большой советской энциклопедии. Б. М. Келлер, А. И. Тугаринов, Г. В. Войткевич. 
  19. White W. M. 3. Decay systems and geochronology II: U and Th // Isotope Geochemistry. — John Wiley & Sons, 2015. — P. 72–100. — 496 p. — ISBN 978-0-470-65670-9. (pdf).
  20. Singer S. B., Hoffman K. A., Chauvin A., Coe R. S., Pringle M. S. (1999). "Dating transitionally magnetized lavas of the late Matuyama Chron: Toward a new 40Ar/39Ar timescale of reversals and events" (PDF). Journal of Geophysical Research. 104 (B1): 679—693. doi:10.1029/JB084iB02p00615. Архивировано (PDF) 30 июля 2010. {{cite journal}}: Неизвестный параметр |deadlink= игнорируется (|url-status= предлагается) (справка)Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  21. Титаева Н. А. Ядерная геохимия: Учебник. — 2-е изд. — М.: Издательство МГУ, 2000. — С. 99—102. — 336 с. — ISBN 5-211-02564-4.
  22. K/Ar and 40Ar/39Ar Methods — The New Mexico Bureau of Geology & Mineral Resources

Литература

Ссылки

Шаблон:Хронология