Сегмент (геометрия)
Сегмент плоской кривой — плоская (обычно выпуклая) фигура, заключённая между кривой и её хордой[1].
Наиболее простой и распространённый пример сегмента плоской кривой: сегмент круга.
Характеристики
[править | править код]Основные характеристики сегмента кривой — его ширина, высота, площадь и длина границы.
Сегмент круга
[править | править код]Длина хорды сегмента круга радиуса и высоты вычисляется по теореме Пифагора:
Площадь сегмента круга радиуса опирающегося на центральный угол (в радианах)[2]:
Сегмент параболы
[править | править код]Архимед в III веке до н. э. доказал, что площадь сегмента параболы, отсекаемого от неё прямой, составляет 4/3 от площади вписанного в этот сегмент треугольника (см. рисунок).
Сегмент эллипса
[править | править код]Пусть эллипс задан каноническим уравнением:
Площадь сегмента между дугой, выпуклой влево, и вертикальной хордой, проходящей через точку с абсциссой можно определить по формуле[3]:
Другие виды плоских сегментов
[править | править код]Задача нахождения площади и длины дуги произвольного сегмента требует применения методов интегрального исчисления, которое исторически было создано именно для этой цели.
Площадь
[править | править код]Для вычисления площади сегмента чаще всего удобно выбрать соответствующую хорду кривой в качестве оси абсцисс. Тогда площадь сегмента, то есть площадь под кривой , пересекающей ось абсцисс в точках a и b, равна:
Например, площадь под первой аркой синусоиды вычисляется как интеграл:
Другой пример: площадь сегмента (арки) циклоиды, порождённой кругом радиуса равна то есть втрое больше площади порождающего круга[4].
Длина дуги
[править | править код]Длина произвольной кривой, в том числе дуги сегмента, вычисляется по формуле
Например, для вычисления длины первой арки синусоиды необходимо вычислить нормальный эллиптический интеграл Лежандра 2-го рода, который не берётся явно. Поэтому для вычисления подобных интегралов сегодня обычно сразу используют численное интегрирование.
Примечания
[править | править код]- ↑ Сегмент // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 1100—1101.
- ↑ Элементарная математика, 1976, с. 512.
- ↑ Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — С. 68. — 720 с.
- ↑ Александрова Н. В. История математических терминов, понятий, обозначений: Словарь-справочник, изд. 3-е. — СПб.: ЛКИ, 2008. — С. 213. — 248 с. — ISBN 978-5-382-00839-4.
Литература
[править | править код]- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.