Асимптотическое разложение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Асимптотическое разложение функции f(x) — формальный функциональный ряд, такой, что сумма произвольного конечного числа членов этого ряда аппроксимирует функцию f(x) в окрестности некоторой (возможно, бесконечно удалённой) её предельной точки. Понятие асимптотического разложения функции и асимптотического ряда были введены Анри Пуанкаре при разрешении задач небесной механики. Отдельные случаи асимптотического разложения были открыты и применялись ещё в XVIII в. Асимптотические разложения и ряды играют важную роль в различных задачах математики, механики и физики.

Определение[править | править вики-текст]

Пусть функции удовлетворяют свойству: для некоторой предельной точки области определения функции f(x). Последовательность функций , удовлетворяющая указанным условиям, называется асимптотической последовательностью. Ряд: , для которого выполняются условия :

или эквивалентно:

называется асимптотическим разложением функции f (x) или её асимптотическим рядом. Этот факт отражается:

Асимптотическое разложение Эрдейи[править | править вики-текст]

Асимптотическое разложение Эрдейи имеет более общее определение. Ряд называется асимптотическим разложением Эрдейи функции f (x), если существует такая асимптотическая последовательность , что

Этот факт записывается в следующем виде:

Такое обобщённое разложение имеет много общих свойств с обычным асимптотическим разложением, однако теория такого разложения плохо изучена, часто мало полезна для числовых вычислений и редко используется.

Примеры[править | править вики-текст]


где  — числа Бернулли и . Это разложение справедливо для всех комплексных s.
  • Примером асимптотического разложения Эрдейи, которое не является обычным разложением, служит[1]:

Примечания[править | править вики-текст]

  1. Roderick Wong. Asymptotic approximations of integrals. Academic Press, London, 1989 ст. 13

Литература[править | править вики-текст]

  • Математическая энциклопедия / Под ред. И. М. Виноградова. Том 2 — М.: Мир, 1985.
  • Эрдейи А. Асимптотические разложения / Пер. с англ. — М., 1962
  • Bleistein, N. and Handlesman, R., Asymptotic Expansions of Integrals, Dover, New York, 1975