Бороводороды

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Бо̀роводоро́ды (также бора́ны, гидри́ды бо́ра[1]) — химические соединения бора с водородом. Отличаются высокой химической активностью и чрезвычайно большой теплотой сгорания. Представляют интерес как ракетное топливо. В органическом синтезе находит применение реакция присоединения борана и некоторых алкилборанов к двойной связи алкенов с вовлечением полученных соединений в дальнейшие превращения.

Известны бораны с числом атомов бора от 2 до 20. BH3 не существует в свободном виде, но известен в виде некоторых комплексных соединений[1].

Получение бороводородов[править | править вики-текст]

Бороводороды являются недостаточно устойчивыми термодинамически соединениями бора и водорода и в связи с этим синтезируются обычно косвенными методами.

На сегодняшний день одним из основных способов получения бороводородов является так называемый «магниевый метод» или «Способ Стока», то есть получение борида магния и последующее разложение последнего соляной кислотой. Полученные бораны (бороводороды) подвергают вакуумной разгонке, очистке и накапливают разделённые отдельные бороводороды в соответствующих условиях для сохранения и дальнейшего использования.

Другим важным промышленным способом получения бороводородов является способ, предложенный впервые Шлезингером и Бургом. Способ заключается в реакции трёххлористого бора с водородом в вольтовой дуге высокого напряжения. Полученный в нём гидрохлороборан подвергают диспропорционированию при охлаждении до комнатной температуры, после чего разделяют диборан и трёххлористый бор. Выход диборана приближается к 55 % вес. В дальнейшем Шлезингер и Браун предложили новый способ эффективного получения бороводородов путем реакции обмена между тетрагидридоборатом натрия (Na[BH4]) и трёхфтористым бором.

Все высшие бораны получают исключительно путем термического крекинга диборана.

Свойства бороводородов[править | править вики-текст]

Бороорганические соединения в качестве ракетного топлива[править | править вики-текст]

Наиболее удобен для синтеза и применения пентаборан(9) (B5H9). Остальные бороводороды интенсивно изучаются, но их применение в настоящее время ограничено. Видами топлива, производными от бора, являются пропилпентаборан (US: BEF-2) и этилпентаборан (US: BEF-3)[2]. Диборан, декаборан и их производные также исследовались на предмет перспективности использования.

Применение в топливных элементах[править | править вики-текст]

Возможно применение борогидридов NaBH4 и KBH4 в топливных элементах. Это дает несколько преимуществ[3]:

  • Приемлемая скорость процесса;
  • Возможность протекания процесса при низкой и отрицательной температуре;
  • Используемые растворы борогидридов негорючи и стабильны, что достигается подщелачиванием;
  • Образование нетоксичных продуктов H2O и NaBO2 (KBO2);
  • Борат может быть регенерирован (переработан в борогидрид);
  • Образование водорода высокой чистоты;
  • Контролируемая подбором катализаторов скорость реакции.

Однако несмотря на все эти преимущества, топливные элементы на основе борогидридов пока не получили широкого распространения. Причина состоит в высокой стоимости производимой электроэнергии, которая суммируется из стоимости каталитических систем (дорогостоящие Pt-содержащие катализаторы), ионообменных мембран и самого боргидридного топлива.

Токсичность и огнеопасность[править | править вики-текст]

Бороводороды — чрезвычайно ядовитые вещества, имеющие помимо общетоксической составляющей также особое, но довольно сильно выраженное нервнопаралитическое воздействие на человека и животных. Диборан обладает удушающим действием, подобно фосгену. Пентабораны и декабораны действуют на центральную нервную систему, почки и печень. Предельно допустимая концентрация в воздухе (США): диборан — 0,1 мг/м3; пентаборан(9) и пентаборан(11) — 0,01 мг/м3; декаборан(16) — 0,03 мг/м3.

Как огнеопасные вещества, бороводороды представляют собой в основном вещества с наивысшей категорией огнеопасности: они способны к самовоспламенению не только на воздухе, но и и при контактах с водой и рядом галогенопроизводных углеводородов. При горении их на воздухе развиваются высокие температуры.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 БСЭ
  2. McDonald G. Thermal stability of a commercial propyl pentaborane (BEF-2) in the range 147—190 °C (PDF). National Advisory Committee for Aeronautics (USA) (13.11.1957).
  3. Основы водородной энергетики / Под ред. В. А. Мошникова и Е. И. Терукова. — СПб.: Изд-во СПбГЭТУ «Лэти», 2010. — 288 с. — ISBN 978-5-7629-1096-5.

Литература[править | править вики-текст]