Грассманиан
Грассмановым многообра́зием или грассманиа́ном линейного пространства размерности называется многообразие, состоящее из его -мерных подпространств. Обозначается или или . В частности, — это многообразие прямых в пространстве , совпадающее с проективным пространством . Названо в честь Германа Грассмана.
На грассманиане существует естественная проективная параметризация (координаты определены с точностью до умножения на константу). Соответствующие координаты называются координатами Плюккера. Они определяют вложение . Алгебраические соотношения на плюккеровы координаты, определяющие образ вложения в проективном пространстве, называются соотношениями Плюккера.
Доказательство
[править | править код]Грассманиан можно наделить следующим атласом.
Пусть — -мерное подпространство . Введём в векторном пространстве скалярное произведение и обозначим через ортогональное дополнение .
Так как , то любое -мерное подпространство , достаточно близкое к , можно отождествить с линейным отображением , если представить каждый вектор в виде суммы , где и , и положить .
Тогда окрестность точки взаимно однозначно отображается на некоторое открытое подмножество пространства линейных отображений . Построенный атлас делает аналитическим многообразием размерности , где .
Для того, чтобы показать, что является проективным алгебраическим многообразием, нужно воспользоваться соотношениями Плюккера, которые являются однородными алгебраическими уравнениями второй степени.
Свойства
[править | править код]- Грассманиан является проективным алгебраическим многообразием размерности , где . Соответственно, если — комплексное пространство, то грассманиан будет комплексно-алгебраическим многообразием.
- Грассмановым конусом порядка называется множество разложимых элементов внешней степени , то есть -форм, представимых в виде произведения 1-форм. Проективизация грассманова конуса порядка совпадает с .
- В силу естественного изоморфизма -форм и -форм, грассмановы многообразия порядка и совпадают.
- Вещественный грассманиан можно представить как однородное пространство ортогональной группы.
- Аналогично, комплексный грассманиан соответствует унитарной группе.
- .
- Эти соотношения означают, что линейное подпространство евклидова пространства можно задать, выбрав в объемлющем пространстве ортонормальный базис, первые векторов которого образуют базис в . Такая параметризация не однозначна, возможен различный выбор базиса как в самом , так и в его ортогональном дополнении. Устранению этого произвола соответствует взятие факторгруппы.
Клеточное разбиение
[править | править код]Грассманиан является клеточным пространством. Соответствующее клеточное разбиение называется клетки Шуберта. Оно строится следующим образом. Выберем в объемлющем пространстве базис . Заданному k-мерному подпространству сопоставим набор чисел (символ Шуберта) по правилу
Здесь — подпространство, натянутое на первые векторов базиса. Множество всех подпространств с заданными значениями гомеоморфно клетке, размерность которой равна . Для комплексного грассманиана все клетки являются комплексными пространствами, поэтому нетривиальные клетки имеются лишь в чётных размерностях. Как следствие, гомологии комплексного грассманиана имеют вид
Здесь — число различных символов Шуберта в (комплексной) размерности .
Обобщения
[править | править код]- Многообразие всех ортонормированных k-реперов в называется многообразием Штифеля . Оно имеет естественную структуру локально тривиального расслоения, слоем которого является ортогональная группа:
- В частности, , .
Литература
[править | править код]- Винберг Э. Б. Курс алгебры. — 3-е изд.. — М.: Факториал Пресс, 2002. — 544 с. — 3000 экз. — ISBN 5-88688-060-7..
- Зеликин М. И. Однородные пространства и уравнение Риккати в вариационном исчислении, — Факториал, Москва, 1998.
- Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.