Модуль Юнга

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Модуль Юнга
Размерность L−1MT−2
Единицы измерения
СИ Па
СГС дин·см-2

Мо́дуль Ю́нга (модуль продольной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.

Назван в честь английского физика XIX века Томаса Юнга.

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

где:

  •  — нормальная составляющая силы,
  •  — площадь поверхности, по которой распределено действие силы,
  •  — длина деформируемого стержня,
  •  — модуль изменения длины стержня в результате упругой деформации (измеренного в тех же единицах, что и длина ).

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где  — плотность вещества.

Связь с другими модулями упругости[править | править код]

В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями

и

где  — коэффициент Пуассона.

Температурная зависимость модуля Юнга[править | править код]

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

где  — адиабатический модуль упругости идеального кристалла при ;  — дефект модуля, обусловленный тепловыми фононами;  — дефект модуля, обусловленный тепловым движением электронов проводимости[2]

Значения модуля Юнга для некоторых материалов[править | править код]

Значения модуля Юнга для некоторых материалов приведены в таблице

Материал модуль Юнга E, ГПа Источник
Алюминий 70 [3]
Бронза 75-125 [3]
Вольфрам 350 [3]
Германий 83 [3]
Графен 1000 [4]
Дюралюминий 74 [3]
Железо 180 [5]
Иридий 520 [3]
Кадмий 50 [3]
Кобальт 210 [3]
Константан 163 [3]
Кремний 109 [3]
Латунь 95 [3]
Лёд 3 [3]
Магний 45 [3]
Манганин 124 [3]
Медь 110 [3]
Никель 210 [3]
Ниобий 155 [6]
Олово 35 [3]
Свинец 18 [3]
Серебро 80 [3]
Серый чугун 110 [3]
Сталь 190/210 [3]
Стекло 70 [3]
Титан 112 [3]
Фарфор 59 [3]
Цинк 120 [3]
Хром 300 [3]

См. также[править | править код]

Примечания[править | править код]

  1. Модули упругости — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. Л.Н. Паль-Валь, Ю.А. Семеренко, П.П. Паль-Валь, Л.В. Скибина, Г.Н. Грикуров. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5-300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226—235.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051.
  5. В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547—557.
  6. П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115—125.

Литература[править | править код]

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.

Ссылки[править | править код]