Молекулярно-кинетическая теория

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Молекулярно-кинетическая теория (МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.

История теории[править | править код]

Началом становления МКТ послужила теория М. В. Ломоносова[1][2]. Ломоносов опытным путём опроверг теории о теплороде и флогистоне, подготовив тем самым, молекулярно-кинетическую теорию XIX века Рудольфа Клаузиуса, Людвига Больцмана и Джеймса Максвелла.

Основное уравнение МКТ[править | править код]

, где  — масса одной молекулы газа, n — концентрация молекул,  — среднеквадратичная скорость молекул.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Релятивистское выражение для этой формулы имеет следующий вид:[3] где  — плотность движущегося вещества,  — скорость света,  — Лоренц-фактор.

Вывод основного уравнения МКТ[править | править код]

Пусть имеется кубический сосуд с ребром длиной и одна частица массой в нём.

Обозначим скорость движения , тогда перед столкновением со стенкой сосуда импульс частицы равен , а после — , поэтому стенке передается импульс . Время, через которое частица сталкивается с одной и той же стенкой, равно .

Отсюда следует:

Так как давление , следовательно сила

Подставив, получим:

Преобразовав:

Так как рассматривается кубический сосуд, то

Отсюда:

.

Соответственно, и .

Таким образом, для большого числа частиц верно следующее: , аналогично для осей y и z.

Поскольку , то . Это следует из того, что все направления движения молекул в хаотичной среде равновероятны.

Отсюда

или .

Пусть  — среднее значение кинетической энергии одной молекулы, тогда:

, откуда, используя то, что (количество вещества), а , имеем .

Уравнение среднеквадратичной скорости молекулы[править | править код]

Уравнение среднеквадратичной скорости молекулы легко выводится из основного уравнения МКТ для одного моля газа.

,

, где  — молярная масса газа,  — масса молекулы газа.

Отсюда окончательно

[4]

См. также[править | править код]

Примечания[править | править код]

  1. Фигуровский Н. А. Очерк общей истории химии. От древнейших времен до начала XIX в. — М.: Наука, 1969
  2. Михаил Васильевич Ломоносов. Избранные произведения в 2-х томах. М.: Наука. 1986
  3. Fedosin, S. G. The potentials of the acceleration field and pressure field in rotating relativistic uniform system : [англ.] // Continuum Mechanics and Thermodynamics : journal. — 2021. — Vol. 33, no. 3. — P. 817—834. — Bibcode2021CMT....33..817F. — doi:10.1007/s00161-020-00960-7. // Потенциалы поля ускорений и поля давления во вращающейся релятивистской однородной системе Архивная копия от 25 января 2021 на Wayback Machine.
  4. Сивухин Д. В. Термодинамика и молекулярная физика // Общий курс физики. — М.: Наука, 1975. — Т. II. — С. 258. — 38 000 экз.

Литература[править | править код]