Потенциальная энергия

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Потенциальная энергия скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Зависит от положения

Виды энергии:
Atwood machine.svg Механическая  Потенциальная
 Кинетическая
Внутренняя
Sun corner.svg Электромагнитная  Электрическая
 Магнитная
Oil&gas portal logo.PNG Химическая
Radiation symbol alternate.svg Ядерная
Гравитационная
Вакуума
Гипотетические:
Тёмная
См.также:Закон сохранения энергии


материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении[1]. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы и описывающая взаимодействие элементов системы[2]. Помимо символа , для потенциальной энергии могут использоваться обозначения , и другие.

Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в Международной системе единиц (СИ) является джоуль, а в системе СГСэрг.

О физическом смысле понятия потенциальной энергии[править | править код]

В то время как кинетическая энергия всегда характеризует тело относительно выбранной системы отсчёта, потенциальная энергия всегда характеризует тело относительно источника силы (силового поля). Кинетическая энергия тела определяется его скоростью относительно выбранной системы отсчёта; потенциальная — расположением тел в поле.

Кинетическая энергия системы всегда представляет собой сумму кинетических энергий точек, потенциальная энергия в общем случае существует лишь для системы в целом, и само понятие «потенциальная энергия отдельной точки системы» может быть лишено смысла[3].

Потенциальная энергия определяется с точностью до постоянного слагаемого[4] (приводимые в следующем разделе выражения для могут быть дополнены произвольным фиксированным членом ). Однако основной физический смысл имеет не само значение потенциальной энергии, а её изменение: например, сила, действующая со стороны потенциального поля на тело, записывается ( — оператор набла) как

или, в простом одномерном случае,

так что произвол выбора не сказывается.

Виды потенциальной энергии[править | править код]

В поле тяготения Земли[править | править код]

Потенциальная энергия тела в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где масса тела, ускорение свободного падения, — высота положения центра масс тела над произвольно выбранным нулевым уровнем.

В электростатическом поле[править | править код]

Потенциальная энергия материальной точки, несущей электрический заряд , в электростатическом поле с потенциалом составляет:

Например, если поле создаётся точечным зарядом в вакууме, то будет (записано в системе СИ), где — расстояние между зарядами и , а электрическая постоянная.

В механической системе[править | править код]

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела и приближённо выражается формулой:

где — жёсткость деформированного тела, — смещение от положения равновесия.

См. также[править | править код]

Ссылки[править | править код]

  1. Тарг С. М. Потенциальная энергия // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. Пойнтинга—Робертсона эффект — Стримеры. — С. 92. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  2. Ландау, Л. Д., Лифшиц, Е. М. Теоретическая физика. — Издание 5-е, стереотипное. — М.: Физматлит, 2004. — Т. I. Механика. — 224 с. — ISBN 5-9221-0055-6.
  3. Айзерман М. А. Классическая механика. - М., Наука, 1980. - с. 76-77
  4. С. К. Игнатов. Механика. Курс лекций для студентов химических специальностей. — Изд-во ННГУ (Нижний Новгород), 2010. — С. 50—51.