Оператор набла

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Обозначается символом (набла) (в Юникоде U+2207, ∇).

Для трёхмерного евклидова пространства в прямоугольной декартовой системе координат (ПДСК)[1] оператор набла определяется следующим образом:

,

где  — единичные векторы по осям соответственно.

Также используется следующая запись оператора набла через компоненты:

.

Через оператор набла естественным способом выражаются основные операции векторного анализа: grad (градиент), div (дивергенция), rot (ротор), а также оператор Лапласа (см. ниже). Широко употребляется в описанном смысле в физике и математике (хотя иногда графический символ используется также для обозначения некоторых других, хотя в некотором отношении не совсем далеких от рассмотренного, математических объектов, например, ковариантной производной).

Под n-мерным оператором набла подразумевается вектор в n-мерном пространстве[2] следующего вида:

,

где единичные векторы по осям соответственно.

Иногда, особенно при начертании от руки, над оператором набла рисуют стрелку:  — чтобы подчеркнуть векторный характер оператора. Смысл такого начертания ничем не отличается от обычного .

  • Иногда (особенно когда речь идет только о применении к скалярным функциям), оператор набла называют оператором градиента, каковым он в применении к скалярным функциям (полям) и является.
  • Замечание: в физике в наше время название оператор Гамильтона по отношению к оператору набла стараются не употреблять, особенно в квантовой физике, во избежание путаницы с квантовым гамильтонианом, имеющим, в отличие от классического, операторную природу.

Свойства оператора набла[править | править вики-текст]

Этот оператор приобретает смысл в сочетании со скалярной или векторной функцией, к которой он применяется.

Если скалярно умножить вектор на функцию , то получится вектор

,

который представляет собой градиент функции .

Если вектор скалярно умножить на вектор , получится скаляр

,

то есть дивергенция вектора .

Если умножить на векторно, то получится ротор вектора :

  • Замечание: как и для обозначения скалярного и векторного произведения вообще, в случае их применения с оператором набла, наряду с использоваными выше, часто используются эквивалентные им альтернативные обозначения, так, например, вместо нередко пишут , а вместо пишут ; это касается и формул, приводимых ниже.

Соответственно, скалярное произведение есть скалярный оператор, называемый оператором Лапласа. Последний обозначается также . В декартовых координатах оператор Лапласа определяется следующим образом:

.

Поскольку оператор набла является дифференциальным оператором, то при преобразовании выражений необходимо учитывать как правила векторной алгебры, так и правила дифференцирования. Например:

То есть производная выражения, зависящего от двух полей, есть сумма выражений, в каждом из которых дифференцированию подвергается только одно поле.

Для удобства обозначения того, на какие поля действует набла, принято считать, что в произведении полей и операторов каждый оператор действует на выражение, стоящее справа от него, и не действует на всё, что стоит слева. Если требуется, чтобы оператор действовал на поле, стоящее слева, это поле каким-то образом отмечают, например, ставя над буквой стрелочку:

Такая форма записи обычно используется в промежуточных преобразованиях. Из-за её неудобства в окончательном ответе от стрелочек стараются избавиться.

Операторы второго порядка[править | править вики-текст]

Так как существуют различные способы перемножения векторов и скаляров, с помощью оператора набла можно записать различные виды дифференцирования. Комбинирование скалярных и векторных произведений даёт 7 различных вариантов производных второго порядка:

Для достаточно гладких полей (дважды непрерывно дифференцируемых) эти операторы не независимы. Два из них всегда равны нулю:

Два всегда совпадают:

Три оставшихся связаны соотношением:

Еще одно может быть выражено через тензорное произведение векторов:

Отличия оператора набла от обычного вектора[править | править вики-текст]

Хотя большинство свойств оператора набла следуют из алгебраических свойств операторов и чисел и становятся вполне очевидными, если рассматривать его как вектор, нужно соблюдать осторожность. Оператор набла не принадлежит тому же пространству, что и обычные векторы, а говоря точнее, скалярное и векторное произведение для него определено с некоторыми отличиями (в основном сводящимися к тому, что — как это обычно подразумевается — оператор действует на те поля, что стоят от него справа, и не действует на стоящие от него слева, из-за чего скалярное и векторное произведение с участием не коммутативны и не антикоммутативны, как это свойственно для таких произведений обычных векторов), таким образом, оператор набла не обладает некоторыми свойствами обычных векторов, и следовательно не во всём может вести себя в соответствии с геометрическими свойствами обычного вектора. В частности,

он не коммутирует с векторами:

,

ведь  — это дивергенция, то есть в конечном итоге просто скалярная функция координат, а представляет собой нетривиальный оператор дифференцирования по направлению векторного поля .

Можно дополнительно убедиться в том, что они не совпадают, применив оба выражения к скалярной функции f:

так как

Если бы набла был вектором, то смешанное произведение было бы всегда равно нулю, однако несложно убедиться, что это неверно.

Кроме того, необходимо помнить, на какие векторы и функции действует каждый оператор набла в написанной формуле, например:

(здесь первый оператор набла действует только на поле x, а второй — только на 'y', что как бы жестко фиксирует порядок действий). Тогда как для обычных векторов:

поскольку здесь x и y легко выносятся.

Поэтому для удобства, при умножении оператора набла на сложное выражение, обычно дифференцируемое поле обозначают стрелочкой:

Если оператор не действует на некоторое поле, то частные производные коммутируют во всех выражениях с компонентами этого поля, поэтому поле и оператор коммутируют (для векторного произведения — антикоммутируют) во всех выражениях и можно производить чисто алгебраические преобразования.

История[править | править вики-текст]

В 1853 году В. Р. Гамильтон ввёл этот оператор и придумал для него символ в виде перевёрнутой греческой буквы Δ (дельта). У Гамильтона острие символа указывало налево, позже в работах П. Г. Тэта символ приобрёл современный вид. Гамильтон назвал этот символ словом «атлед» (слово «дельта», прочитанное наоборот), однако позднее английские учёные, в том числе О. Хевисайд, стали называть этот символ «на́бла» из-за сходства с остовом древнеассирийского музыкального инструмента наблы, а оператор получил название оператора Гамильтона, или оператора набла[3].

Существует мнение, что  — буква финикийского алфавита, происхождение которой связано с музыкальным инструментом типа арфы[4]. «ναβλα» (набла) на древнегреческом означает «арфа».

Примеры[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. В других система координат — см. по ссылке ниже.
  2. Эта размерность n, то есть размерность пространства, на поля на (в) котором действует оператор, указывается явно или подразумевается из формулировки соответствующей теории или задачи.
  3. «Кратные и криволинейные интегралы. Элементы теории поля», В. Р. Гаврилом, Е. Е. Иванова, В. Д. Морозова. Математика в техническом университете VII, издательство МГТУ имени Н. Э. Баумана.
  4. О. В. Мантуров и др. Математика в понятиях, определениях и терминах. Под ред. Л. В. Сабинина. Т. 2. — М.: Просвещение, 1982.

См. также[править | править вики-текст]