Спинорная группа
Запрос «Spin» перенаправляется сюда; о музыкальном журнале см. Spin (журнал).
Спинорная группа — подмножество элементов алгебры Клиффорда над (со скалярным произведением), состоящее из элементов вида , где — единичные векторы. Операцией в спинорной группе является умножение в алгебре Клиффорда.
Спинорная группа над евклидовым пространством обычно обозначается . Существует короткая точная последовательность
Таким образом спинорная группа является двулистным накрытием специальной ортогональной группы . Гомоморфизм может быть построен следующим образом: Каждому единичному вектору q можно сопоставить отражение относительно гиперплоскости, перпендикулярной q. Таким образом, элементу спинорной группы можно сопоставить композицию отражений
которая принадлежит группе .
Строение первых спинорных групп[править | править код]
![]() |
Это заготовка статьи по алгебре. |
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 14 мая 2011 года. |