Теория БКШ

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Теория БКШ (Теория Бардина, Купера, Шриффера) — микроскопическая теория сверхпроводников, являющаяся на сегодняшний день доминирующей. В её основе лежит концепция куперовской пары: коррелированного состояния электронов с противоположными спинами и импульсами. В 1972 году создатели теории были удостоены Нобелевской премии по физике. Одновременно микроскопическая теория сверхпроводимости была построена с использованием так называемых преобразований Боголюбова Н. Н. Боголюбовым, показавшим, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа[1][2].

Электроны вблизи поверхности Ферми могут испытывать эффективное притяжение, взаимодействуя друг с другом посредством фононов. Надо ввести уточнение, притягиваются только те электроны, энергия которых отличается от энергии электронов на поверхности Ферми не более чем на величину , где  — Дебаевская частота (англ.), остальные электроны не взаимодействуют. Эти электроны объединяются в пары, называемые часто куперовскими. Куперовские пары, в отличие от отдельных электронов, обладают рядом свойств, характерных для бозонов, которые при охлаждении могут переходить в одно квантовое состояние. Можно сказать, что эта особенность позволяет парам двигаться без столкновения с решёткой и оставшимися электронами, то есть без потерь энергии.

Куперовские пары[править | править код]

Леон Купер рассмотрел образование связного состояния двух электронов имеющих противоположные спины и скорости[3] и предположил, что эти пары могут быть ответственны за сверхпроводящее состояние. Он указал на возможность образования связного состояния двух электронов на уровне Ферми при обмене фононами, которое качественно можно рассмотреть в виде динамического взаимодействия электронов проводимости с колебаниями ионной кристаллической решёткой. Когда электрон пролетает с\рядом с ионами он притягивает ионы и создаёт за собой положительную плотность заряда которая притягивает другой электрон противоположный по спину и скорости (в этом случае взаимодействие максимально).

Купер рассмотрел двухчастичную задачу в системе центра масс сводя её к одночастичной задаче в периодическом поле кристалла с уравнением и переходя от переменных для координат электронов и к координатам для центра масс и расстояния между частицами и (для волновых векторов от и к и ), а также энергии

для волновой функции

Предполагая матричные элементы постоянными для волновых векторов вблизи уровня Ферми и нулевыми в области отличной от уровня Ферми более чем на Дебаевскую энергию можно получить уравнение для собственных значений

где — плотность состояний куперовских пар с моментом K, которая предполагается постоянной. Выражение для энергии связи куперовской пары выражается через энергию Дебая[4]

Важные уточнения[править | править код]

  • Отметим, что в теории БКШ понятие куперовской пары четко не определено и в явном виде не вводится. Куперовская пара хорошо определена лишь в двухчастичной задаче Купера, которая считается вспомогательной для построения многочастичной теории БКШ.
  • В настоящее время рекордным значением критической температуры Tc =135 K (под давлением Tc=165 K, −109 °C) обладает вещество HgBa2Ca2Cu3O8+x, открытое в 1993 г. С. Н. Путилиным и Е. В. Антиповым из МГУ. Нормальное (и сверхпроводящие) состояния показывают много общих особенностей между различными составами купратов; многие из этих свойств не могут быть объяснены в рамках теории БКШ. Последовательной теории сверхпроводимости в купратах в настоящее время не существует.

Примечания[править | править код]

  1. Н. Н. Боголюбов (1958). «О новом методе в теории сверхпроводимости». Журнал экспериментальной и теоретической физики 34(1): 58.
  2. Боголюбов Н. Н., Толмачев В. В., Ширков Д. В. Новый метод в теории сверхпроводимости. — М.: Изд-во АН СССР, 1958.
  3. Cooper, Leon N. (1956). «Bound electron pairs in a degenerate Fermi gas». Physical Review 104 (4): 1189–1190. DOI:10.1103/PhysRev.104.1189. Bibcode1956PhRv..104.1189C.
  4. Cooper, 1956.