Спин

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Спин (от англ. spin — вертеть[-ся], вращение) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

Спин измеряется в единицах ħ[1] (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия.

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике[2]. Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы[3].

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы[4].

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином 0 описываются однокомпонентной волновой функцией (скаляр), со спином \frac{1}{2} описываются двухкомпонентной волновой функцией (спинор), со спином 1 описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 описываются шестикомпонентной волновой функцией (тензор)[5].

Что такое спин — на примерах[6][править | править вики-текст]

Самый простой пример спина — это целый спин, равный 1:

- если взять вектор (для примера — положить ручку на стол) и повернуть его на 360 градусов, то этот вектор вернется в свое первоначальное состояние (ручка опять будет лежать так же, как и до поворота)

также легко представить себе спин, равный 0:

- это точка — она со всех сторон выглядит одинаково, как её ни крути

Ещё один пример объекта который требует поворота на 720 градусов для возврата в начальное положение.

чуть сложнее — целый спин, равный 2:

- нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) — это тоже просто — нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще — главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы[7]) — и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного

а вот с полуцелым спином, равным 1/2 уже придётся выходить в 3 измерения:

- здесь нужно будет взять лист Мебиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов

Свойства спина[править | править вики-текст]

Любая частица может обладать двумя видами углового момента: орбитальным угловым моментом и спином.

В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин — это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики. Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина \hat{\vec{s}}, алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента \hat{\vec{\ell}}. Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ).

Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например J_{z}. При этом компоненты J_{x}, J_{y} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J_{z} равно J. В то же время квадрат J^2 всего вектора спина равен J(J+1). Таким образом J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2} \geqslant J. При J=\frac{1}{2} среднеквадратические значения всех компонент из-за флуктуаций равны \widehat{J_{x}^{2}} = \widehat{J_{y}^{2}} =\widehat{J_{z}^{2}} = \frac{1}{4}.[2]

Вектор спина меняет свое направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта[8].

Примеры[править | править вики-текст]

Ниже указаны спины некоторых микрочастиц.

спин общее название частиц примеры
0 скалярные частицы π-мезоны, K-мезоны, хиггсовский бозон, атомы и ядра 4He, чётно-чётные ядра, парапозитроний
1/2 спинорные частицы электрон, кварки, мюон, тау-лептон, нейтрино, протон, нейтрон, атомы и ядра 3He
1 векторные частицы фотон, глюон, W- и Z-бозоны, векторные мезоны, ортопозитроний
3/2 спин-векторные частицы Ω-гиперон, Δ-резонансы
2 тензорные частицы гравитон, тензорные мезоны

На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать \frac{9}{2} \hbar[2].

История[править | править вики-текст]

В 1921 году опыт Штерна — Герлаха подтвердил наличие у атомов спина и факт пространственного квантования направления их магнитных моментов.

В 1924 году, ещё до точной формулировки квантовой механики, Вольфганг Паули вводит новую, двухкомпонентную внутреннюю степень свободы для описания валентного электрона в щелочных металлах. В 1927 году он же модифицирует недавно открытое уравнение Шрёдингера для учёта спиновой переменной. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком описании у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в абстрактном (то есть не связанном прямо с обычным) двумерном спиновом пространстве.

В 1928 году Поль Дирак строит релятивистскую теорию спина и вводит уже четырёхкомпонентную величину — биспинор.

Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина.

Спин и магнитный момент[править | править вики-текст]

Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент, а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем. Отношение величины магнитного момента к величине спина называется гиромагнитным отношением, и, в отличие от орбитального углового момента, оно не равно магнетону (\! \mu_0):

\hat{\vec{\mu}} = g\cdot  \mu_0 \hat{\vec{s}}.

Введённый здесь множитель g называется g-фактором частицы; значения этого g-фактора для различных элементарных частиц активно исследуются в физике элементарных частиц.

Спин и статистика[править | править вики-текст]

Вследствие того, что все элементарные частицы одного и того же сорта тождественны, волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе — Эйнштейна и называются бозонами. Во втором случае частицы описываются статистикой Ферми — Дирака и называются фермионами.

Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) — фермионами[1].

Обобщение спина[править | править вики-текст]

Введение спина явилось удачным применением новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число «цвет» — более сложный аналог спина.

Спин классических систем[править | править вики-текст]

Понятие спина было введено в квантовой теории. Тем не менее, в релятивистской механике можно определить спин классической (не квантовой) системы как собственный момент импульса[9]. Классический спин является 4-вектором и определяется следующим образом:

S_\nu  = \frac{1}{2}\,\varepsilon_{\nu\alpha\beta\gamma}\,L^{\alpha\beta}\,U^\gamma,

где

  • L^{\alpha\beta}=\sum (x^\alpha p^\beta-x^\beta p^\alpha) — тензор полного момента импульса системы (суммирование проводится по всем частицам системы);
  • U^{\alpha}=P^\alpha/M — суммарная 4-скорость системы, определяемая при помощи суммарного 4-импульса P^\alpha=\sum p^\alpha и массы M системы;
  • \varepsilon_{\nu\alpha\beta\gamma} — тензор Леви-Чивиты.

В силу антисимметрии тензора Леви-Чивиты, 4-вектор спина всегда ортогонален к 4-скорости U^{\alpha}. В системе отсчёта, в которой суммарный импульс системы равен нулю, пространственные компоненты спина совпадают с вектором момента импульса, а временная компонента равна нулю.

Именно поэтому спин называют собственным моментом импульса.

В квантовой теории поля это определение спина сохраняется. В качестве момента импульса и суммарного импульса выступают интегралы движения соответствующего поля. В результате процедуры вторичного квантования 4-вектор спина становится оператором с дискретными собственными значениями.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. 1 2 Фундаментальные частицы и взаимодействия
  2. 1 2 3 Широков, 1972, с. 44
  3. Широков, 1972, с. 45
  4. Паули, 1947, с. 279
  5. Ширков, 1980, с. 147
  6. Видеозапись лекции - что такое спин.
  7. STEPHEN HAWKING. A Brief History of Time from the Big Bang to Black Holes. — Space Time Publications. — Кэмбридж: Carl Sagan Interior Illustrations, 1998. — С. 232. — 232 с. — ISBN 978-5-367-00754-1.
  8. Широков, 1972, с. 276
  9. Вейнберг С. Гравитация и космология. — M.: Мир, 1975.

Литература[править | править вики-текст]

  • Физическая энциклопедия. Под ред. А. М. Прохорова. — М.: «Большая российская энциклопедия», 1994. — ISBN 5-85270-087-8.
  • Richard G. Milner A Short History of Spin (англ.) // Contribution to the XVth International Workshop on Polarized Sources, Targets, and Polarimetry. — Charlottesville, Virginia, USA, September 9-13, 2013. — arΧiv1311.5016.
  • Широков Ю.М., Юдин Н.П. Ядерная физика. — М.: Наука, 1972. — 672 с.
  • Ширков Д. В. Физика микромира. — М.: Советская энциклопедия, 1980. — 527 с.
  • Паули В. Общие принципы волновой механики. — М.: ОГИЗ, 1947. — 333 с.

Статьи[править | править вики-текст]