Эргодичность

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Эргодичность — специальное свойство некоторых динамических систем, состоящее в том, что в процессе эволюции почти каждое состояние с определённой вероятностью проходит вблизи любого другого состояния системы. Система, в которой фазовые средние совпадают с временными, называется эргодической.

Преимущество эргодических динамических систем в том, что при достаточном времени наблюдения такие системы можно описывать статистическими методами. Например, температура газа — это мера средней энергии молекулы. Естественно, предварительно необходимо доказать эргодичность данной системы.

Для эргодических систем математическое ожидание по временным рядам должно совпадать с математическим ожиданием по пространственным рядам.

Более простое объяснение: для расчёта/определения параметров системы можно долго наблюдать за поведением одного её элемента, а можно за очень короткое время рассмотреть все её элементы (или достаточно много элементов). В обоих случаях получатся одинаковые результаты, если система обладает свойством эргодичности.

Эргодическая теория — один из разделов общей динамики.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • В. И. Арнольд, А. Авец. Эргодические проблемы классической механики. — Москва—Ижевск: РХД, 1999.
  • И. П. Корнфельд, Я. Г. Синай, С. В. Фомин. Эргодическая теория. — М.: Наука, 1980.
  • А. Б. Каток, Б. Хасселблат. Введение в современную теорию динамических систем / пер. с англ. А. Кононенко при участии С. Ферлегера. — М.: Факториал, 1999. — 768 с.
  • Хинчин А. Я. Математические основания статистической механики, М. — Л., 1943.
  • Немыцкий В. В., Степанов В. В. Качественная теория дифференциальных уравнений, 2 изд., М. — Л., 1949.
  • Халмош П. Лекции по эргодической теории: пер. с англ. — М., 1959.
  • G. D. Birkhoff, Proof of the ergodic theorem, (1931), Proc Natl Acad Sci U S A, 17 pp 656—660.
  • J. von Neumann, Proof of the Quasi-ergodic Hypothesis, (1932), Proc Natl Acad Sci U S A, 18 pp 70-82.
  • J. von Neumann, Physical Applications of the Ergodic Hypothesis, (1932), Proc Natl Acad Sci U S A, 18 pp 263—266.

Ссылки[править | править вики-текст]