Яма с бесконечными стенками

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Яма с бесконечными стенками, в квантовой механике, представляет собой модель частицы, заключённую в "ящике" определённой формы. В одномерном случае этот ящик представляет собой конечный отрезок. Внутри отрезка потенциал считается нулевым. Во всех остальных точках вещественной прямой потенциал обращается в бесконечность. Математически это обычно отражают в граничных условиях, считая, что волновые функции обращаются в нуль на концах отрезка. Данный потенциал является предельным случаем прямоугольной квантовой ямы. В многомерном случае потенциал считается равным нулю внутри некоторой области, на границах которой ставятся граничные условия Дирихле. Часто рассматривают прямоугольную область (прямоугольный "ящик").

Одномерная потенциальная яма с бесконечными стенками[править | править вики-текст]

Потенциал одномерной потенциальной ямы с бесконечными стенками имеет вид

Стационарное уравнение Шрёдингера на интервале

С учётом обозначения , оно примет вид:

Общее решение удобно представить в виде линейной оболочки чётных и нечётных функций:

Граничные значения имеют вид:

Они приводят к однородной системе линейных уравнений:

которая имеет нетривиальные решения при условии равенства нулю её определителя:

что после тригонометрических преобразований принимает вид:

Корни этого уравнения имеют вид

Подставляя в систему, имеем:

Таким образом, решения распадаются на две серии — чётных и нечётных решений:

Тот факт, что решения разбиваются на чётные и нечётные связан с тем, что потенциал сам по себе является чётной функцией. С учётом нормировки

получим явный вид нормировочных множителей:

В результате получим собственные функции гамильтониана:

с соответствующим энергетическим спектром:

Литература[править | править вики-текст]

  • Бом Д. Квантовая теория. — Наука, Главная редакция физико-математической литературы, 1965.
  • Флюгге З. Задачи по квантовой механике. — Издательство ЛКИ, 2008. — Т. 1.