Определитель

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Определи́тель (или детермина́нт) — одно из основных понятий линейной алгебры. Определитель квадратной матрицы размеров , заданной над коммутативным кольцом , является элементом кольца , вычисляемым по формуле, приведённой ниже.

Он «определяет» свойства матрицы . В частности, матрица обратима тогда и только тогда, когда её определитель является обратимым элементом кольца .

В случае, когда  — поле, определитель матрицы равен нулю тогда и только тогда, когда ранг матрицы меньше или когда системы строк и столбцов матрицы являются линейно зависимыми.

Определитель матрицы А обозначается как , или .

История[править | править вики-текст]

Теория определителей возникла в связи с задачей решения систем линейных уравнений.

К понятию определителя близко подошли авторы древнекитайского учебника «Математика в девяти книгах»[1].

В Европе определители матриц 2×2 встречаются у Кардано в XVI веке. Для старших размерностей определены Лейбницем в 1693 году. Первая публикация принадлежит Крамеру. Теория определителей создана Вандермондом, Лапласом, Коши и Якоби. Термин «определитель» встречается впервые у Гаусса.

Японский математик Сэки Такакадзу ввёл определители независимо в 1683 году[2].

Определения[править | править вики-текст]

Через перестановки[править | править вики-текст]

Для квадратной матрицы размера её определитель вычисляется по формуле:

,

где суммирование проводится по всем перестановкам  чисел , а  обозначает число инверсий в перестановке .

Таким образом, в определитель входит слагаемых, которые также называют «членами определителя».

Эквивалентная формула:

,

где коэффициент символ Леви-Чивиты — равен:

0, если не все индексы различны,
1, если все индексы различны и подстановка чётна,
−1, если все индексы различны и подстановка нечётна.

Аксиоматическое построение (определение на основе свойств)[править | править вики-текст]

Понятие определителя может быть введено на основе его свойств. А именно, определителем вещественной матрицы называется функция , обладающая следующими тремя свойствами:

  1.  — кососимметрическая функция строк (столбцов) матрицы .
  2.  — полилинейная функция строк (столбцов) матрицы .
  3. , где  — единичная -матрица.

Значение определителя матрицы[править | править вики-текст]

Для матрицы первого порядка значение детерминанта равно единственному элементу этой матрицы:

Матрицы 2 x 2[править | править вики-текст]

Схема расчета определителя матрицы 2×2.
Площадь параллелограмма равна модулю определителя матрицы, образованной векторами - сторонами параллелограмма.

Для матрицы определитель вычисляется как:

Эта матрица A может быть рассмотрена как матрица линейного отображения, преобразующего единичный квадрат в параллелограмм с вершинами (0, 0), (a, b), (a + c, b + d), и (c, d).

Абсолютное значение определителя равно площади этого параллелограмма, и, таким образом, отражает коэффициент, на который масштабируются площади при преобразовании A.

Значение определителя со знаком (ориентированная площадь параллелограмма) помимо коэффициента масштабирования также показывает, выполняет ли преобразование A отражение.

Матрицы 3 x 3[править | править вики-текст]

Определитель матрицы можно вычислить по формуле:

Для более удобного вычисления определителя третьего порядка можно воспользоваться правилом Саррюса или правилом треугольника.

Определитель матрицы, составленной из векторов равен их смешанному произведению в правой декартовой системе координат. Аналогично двумерному случаю, определитель такой матрицы равен ориентированному объёму параллелепипеда, натянутого на .

Матрицы N x N[править | править вики-текст]

В общем случае, для матриц более высоких порядков (выше 2-го порядка) определитель можно вычислить, применив следующую рекурсивную формулу:

, где  — дополнительный минор к элементу . Эта формула называется разложением по строке.

Легко доказать, что при транспонировании определитель матрицы не изменяется (иными словами, аналогичное разложение по первому столбцу также справедливо, то есть даёт такой же результат, как и разложение по первой строке):

Также справедливо и аналогичное разложение по любой строке (столбцу):

Обобщением вышеуказанных формул является разложение детерминанта по Лапласу (Теорема Лапласа), дающее возможность вычислять определитель по любым строкам (столбцам):

Альтернативные методы вычисления[править | править вики-текст]

где матрицы, получающиеся из исходной вычёркиванием соответствующих строк и столбцов.

Основные свойства определителей[править | править вики-текст]

Следующие свойства отражают основные результаты теории определителей, применение которых выходит далеко за пределы этой теории:

  1. (Определитель единичной матрицы равен 1);
  2. (Определитель является однородной функцией степени на пространстве матриц размера );
  3. (Определитель матрицы не меняется при её транспонировании);
  4. (Определитель произведения матриц равен произведению их определителей);
  5. , причём матрица обратима тогда и только тогда, когда обратим её определитель ;
  6. Существует ненулевое решение уравнения тогда и только тогда, когда (или же должен быть нетривиальным делителем нуля в случае, если - не целостное кольцо).

Определитель как функция строк (столбцов) матрицы[править | править вики-текст]

При изучении теории определителей полезно иметь в виду, что в основе этой теории лежит техника манипулирования со строками и столбцами матриц, разработанная К.Ф. Гауссом (преобразования Гаусса). Суть этих преобразований сводится к линейным операциям над строками (столбцами) и их перестановке. Эти преобразования достаточно простым образом отражаются на определителе, и при их изучении удобно "расчленить" исходную матрицу на строки (или столбцы) и считать определитель функцией, определённой над наборами строк (столбцов). Далее буквами обозначаются строки (столбцы) матрицы .

1. Определитель — полилинейная функция строк (столбцов) матрицы. Полилинейность означает линейность функции по каждому аргументу при фиксированных значениях остальных аргументов:
2. Определитель — кососимметрическая функция строк (столбцов) матрицы, то есть при перестановке двух строк (столбцов) матрицы её определитель умножается на −1:
3. Если две строки (столбца) матрицы совпадают, то её определитель равен нулю:

Замечание. Свойства 1-3 являются основными свойствами определителя как функции строк (столбцов), они легко доказываются непосредственно из определения. Свойство 2 (кососимметричность) является логическим следствием свойств 1 и 3. Свойство 3 является логическим следствием свойства 2, если в кольце элемент 2 (т.е. 1 + 1) не совпадает с нулём и не является делителем нуля. Из свойств 1 и 3 вытекают также следующие свойства:

4. Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя (следствие свойства 1).
5. Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю (следствие свойства 4).
6. Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю (следствие свойств 1 и 3).
7. При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится (следствие свойств 1 и 6).

Фактом, имеющим фундаментальное значение, является универсальность определителя как полилинейной кососимметрической функции полного ранга, аргументами которой являются элементы конечномерного векторного пространства (или -модуля с конечным базисом). Справедлива следующая

Теорема. Пусть - свободный -модуль ранга (-мерное векторное пространство над , если - поле). Пусть - -значная функция на , обладающая свойствами 1-3. Тогда при всяком изоморфизме () существует константа такая, что при всех значениях справедливо равенство:
.

Доказательство. Фиксируем некоторый изоморфизм из в . Пусть - строки, составляющие единичную матрицу и - соответствующий им базис пространства . Разложим векторы по этому базису: . Тогда им будут соответствовать следующие строки (столбцы): . В силу полилинейности функции

В силу свойства 3, если среди индексов есть совпадающие, то

.

В противном случае, в силу кососимметричности (свойства 2), получается:

.

Таким образом, , где .

Следствие (Мультипликативность определителя). Пусть - матрица размера . Тогда для любой матрицы размера .

Доказательство. Рассмотрим на пространстве столбцов кососимметрическую полилинейную форму . Согласно доказанной теореме, эта форма равна , где .

Определитель и ориентированный объём[править | править вики-текст]

Пусть - три вектора в пространстве . Они порождают параллелепипед, вершины которого лежат в точках с радиус-векторами . Этот параллелепипед может быть вырожден, если вектора компланарны (лежат в одной плоскости, линейно зависимы).

Функция ориентированного объёма определяется как объём параллелепипеда, порождённого этими векторами, и взятый со знаком "+", если тройка векторов положительно ориентирована, и со знаком "-", если она ориентирована отрицательно. Функция полилинейна и кососимметрична. Свойство 3, очевидно, выполнено. Для доказательства полилинейности этой функции, достаточно доказать её линейность по вектору . Если вектора линейно зависимы, значение будет нулевым независимо от вектора , и значит, линейно зависящим от него. Если вектора линейно независимы, обозначим через вектор единичной нормали к плоскости векторов , такой, что . Тогда ориентированный объём параллелепипеда равен произведению площади основания, построенного на векторах и независящего от вектора , и алгебраической величины проекции вектора на нормаль к основанию, которая равна скалярному произведению и является величиной, линейно зависящей от вектора . Линейность по доказана, и аналогично доказывается линейность по остальным аргументам.

Применяя теорему об универсальности определителя как кососимметрической полилинейной функции, получаем, что при выборе ортонормированного базиса пространства

,

где - координаты векторов в выбранном базисе.

Таким образом, определитель матрицы коэффициентов векторов относительно ортонормированного базиса имеет смысл ориентированного объёма параллелепипеда, построенного на этих векторах.

Всё вышесказанное без существенных изменений переносится на пространство произвольной размерности.

Разложение определителя по строке/столбцу и обращение матриц[править | править вики-текст]

Формулы разложения определителя по строке/столбцу позволяют сводить вычисление определителей к рекурсивной процедуре, использующей вычисление определителей меньших порядков. Для вывода этих формул сгруппируем и просуммируем в формуле для определителя матрицы , с учётом равенства , все ненулевые члены, содержащие элемент . Эта сумма равна:

,

где - матрица, получаемая из удалением строки с номером и столбца с номером .

Так как произвольный элемент можно перестановками соответствующего столбца вправо и перестановками соответствующей строки вниз переместить в правый нижний угол матрицы, причём дополнительная к нему матрица сохранит свой вид, то сумма всех членов в разложении определителя, содержащих , будет равна

.

Величина называется алгебраическим дополнением элемента матрицы .

Учитывая, что каждый член разложения определителя с ненулевым коэффициентом содержит ровно один элемент из i-ой строки, можно разложить определитель по членам этой строки:

- Формула разложения определителя по i-ой строке

Аналогично, учитывая, что каждый член разложения определителя с ненулевым коэффициентом содержит ровно один элемент из j-ого столбца, можно разложить определитель по членам этого столбца:

- Формула разложения определителя по j-ому столбцу

Если элементы k-й строки матрицы скопировать в i-ую строку, её определитель станет равен нулю, а по формуле разложения определителя по i-ой строке получится:

- Формула "фальшивого" разложения определителя по i-ой строке ().

Аналогично для столбцов:

- Формула "фальшивого" разложения определителя по j-ому столбцу ()

Полученные формулы полезно записать в матричном виде. Введём матрицу алгебраических дополнений к элементам матрицы : . Тогда, согласно с полученными формулами,

.

Следствие 1. Если - обратимый элемент кольца , тогда - обратимая матрица и .

Следствие 2. Если для столбца , тогда . Если - ненулевой столбец, тогда либо равен нулю, либо является делителем нуля.

Следствие 3 (Правило Крамера). Пусть вектор - удовлетворяет уравнению , где - матрица размера , . Тогда при любых справедливо равенство:

Доказательство Следствия 3. Обозначим через сумму и введём

матрицу и вектор .

Тогда и согласно следствия 2 . Но так как одна из компонент вектора равна -1, это означает, что . Утверждение доказано, так как

.

Некоторые специальные свойства определителей[править | править вики-текст]

Алгоритмическая реализация[править | править вики-текст]

  • Прямые методы вычисления определителя могут быть основаны непосредственно на его определении, как суммы по перестановкам, или на разложении Лапласа по определителям меньшего порядка. Однако такие методы очень неэффективны, так как требуют О(n!) операций для вычисления определителя -го порядка.
  • Один из более быстрых методов заключается в простой модификации метода Гаусса. Следуя методу Гаусса, произвольную матрицу можно привести к ступенчатому виду (Верхнетреугольная матрица), используя лишь две следующие операции над матрицей — перестановку двух строк и добавление к одной из строк матрицы другой строки, умноженной на произвольное число. Из свойств определителя следует, что вторая операция не изменяет определителя матрицы, а первая лишь меняет его знак на противоположный. Определитель матрицы, приведённой к ступенчатому виду, равен произведению элементов на её диагонали, так как она является треугольной, поэтому определитель исходной матрицы равен:
где  — число перестановок строк, выполненных алгоритмом, а  — ступенчатая форма матрицы , полученная в результате работы алгоритма. Сложность этого метода, как и метода Гаусса, составляет .
  • Определитель можно вычислить, зная LU-разложение матрицы. Если , где и  — треугольные матрицы, то . Определитель треугольной матрицы равен просто произведению её диагональных элементов.
  • Если доступен алгоритм, выполняющий умножение двух матриц порядка за время , где , для некоторого , то определитель матрицы порядка может быть вычислен за время .[3] В частности это означает, что, используя для умножения матриц алгоритм Копперсмита — Винограда, определитель можно вычислить за время .

Специальные виды определителей[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Э. И. Березкина. Математика древнего Китая. — М.: Наука, 1980.
  2. H. W. Eves. An Introduction to the History of Mathematics. — Saunders College Publishing, 1990.
  3. J. R. Bunch and J.E. Hopcroft. Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation, 28 (1974) 231—236.

Литература[править | править вики-текст]