Композиция функций

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая 217.114.225.120 (обсуждение) в 05:15, 1 августа 2021. Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Компози́ция (суперпози́ция) фу́нкций — это применение одной функции к результату другой.

Композиция функций и обычно обозначается [1][2], что обозначает применение функции к результату функции , то есть .

Определение

Пусть даны две функции и где образ множества Тогда их композицией называется функция , определённая равенством[3]:

Связанные определения

  • Термин «сложная функция» может быть применим к композиции двух функций, каждая из каких имеет один аргумент[4]. Также он может употребляться в ситуации, когда на вход функции нескольких переменных подаётся сразу несколько функций от одной или нескольких исходных переменных[5]. Например, сложной функцией нескольких переменных можно назвать функцию вида
потому что она представляет собой функцию , на вход которой подаются результаты функций и .

Свойства композиции[3]

  • Композиция ассоциативна:
  • Если тождественное отображение на , то есть
то
  • Если — тождественное отображение на , то есть
то
  • Композиция отображений , , вообще говоря, не коммутативна, то есть Например, даны функции — тогда однако

Дополнительные свойства

  • Пусть функция имеет в точке предел , а функция имеет в точке предел . Тогда, если существует проколотая окрестность точки , пересечение которой с множеством отображается функцией в проколотую окрестность точки , то в точке существует предел композиции функций и выполнено равенство:
  • Если функция имеет в точке предел , а функция непрерывна в точке , то в точке существует предел композиции функций и выполнено равенство:
  • Композиция непрерывных функций непрерывна. Пусть топологические пространства. Пусть и  — две функции, , и где — это множество всех функций, первая производная которых в заданной точке существует. Тогда .
  • Композиция дифференцируемых функций дифференцируема. Пусть , , и . Тогда , и
.

Примечания

  1. Обозначение.
  2. Composition of Functions. www.mathsisfun.com. Дата обращения: 10 мая 2021.
  3. 1 2 Кострикин, 2004, с. 37-38.
  4. Производная сложной функции. www.math24.ru. Дата обращения: 10 мая 2021.
  5. функции нескольких переменных.

Литература

  • Кострикин А. И. Введение в алгебру. Часть 1. Основы алгебры. — 3-е изд.. — М.: ФИЗМАТЛИТ, 2004. — 272 с. — ISBN 5-9221-0487-Х.