Внутренняя метрика
Перейти к навигации
Перейти к поиску
Внутренняя метрика — метрика в пространстве, определяемая с помощью функционала длины, как инфимум длин всех путей (кривых), соединяющих данную пару точек.
Определения
[править | править код]Метрика на пространстве называется внутренней, если для любых двух точек расстояние между ними определяется формулой где обозначает длину пути и точная нижняя грань берётся по всем путям , соединяющим точки .
Связанные определения
[править | править код]- Пусть — две произвольные точки метрического пространства и — произвольное положительное число. Точка называется их -серединой, если
- Метрическое пространство называется геодезическим, если любые две точки можно соединить кратчайшей.
Свойства
[править | править код]- Если — пространство с внутренней метрикой, то для любых двух точек и любого существует их -середина.
- Лемма Менгера: В случае, когда метрическое пространство полное, имеет место и обратное утверждение: если для любых двух точек и любого существует их -середина, то эта метрика внутренняя.
- Полное метрическое пространство с внутренней метрикой обладает следующим свойством: для любых двух точек и найдётся кривая длины соединяющая точки и .
- В полном метрическом пространстве с внутренней метрикой длина кратчайшей совпадает с расстоянием между её концами.
- Теорема Хопфа — Ринова: Если — локально компактное полное метрическое пространство с внутренней метрикой, то любые две точки можно соединить кратчайшей. Более того, пространство является ограниченно компактным (то есть все ограниченные замкнутые подмножества являются компактными).
- Локально компактное пространство с внутренней метрикой является геодезическим.
Примеры
[править | править код]Литература
[править | править код]- Бураго Д.Ю., Бураго Ю.Д., Иванов С.В., Курс метрической геометрии. — Москва-Ижевск, Институт компьютерных исследований, 2004. ISBN 5-93972-300-4