Теорема Менелая: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 33: Строка 33:


* Тригонометрический эквивалент:
* Тригонометрический эквивалент:
: <math>\frac{\sin\angle BAA'}{\sin\angle A'AC} \cdot \frac{\sin\angle CBB'}{\sin\angle B'BA} \cdot \frac{\sin\angle ACC'}{\sin\angle C'CB}=-1</math>, где все углы — [[ориентированный угол|ориентированные]].
: <math>\frac{\sin\angle BAA'}{\sin\angle A'AC} \cdot \frac{\sin\angle CBB'}{\sin\angle B'BA} \cdot \frac{\sin\angle ACC'}{\sin\angle C'CB}=-1</math>, где все углы — [[Ориентированный угол|ориентированные]].
* В сферической геометрии теорема Менелая приобретает вид
* В [[Сферическая геометрия|сферической геометрии]] теорема Менелая приобретает вид
: <math>\frac{\sin |AB'|}{\sin |B'C|}\cdot\frac{\sin |CA'|}{\sin |A'B|}\cdot\frac{\sin |BC'|}{\sin |C'A|} = 1.</math>
: <math>\frac{\sin |AB'|}{\sin |B'C|}\cdot\frac{\sin |CA'|}{\sin |A'B|}\cdot\frac{\sin |BC'|}{\sin |C'A|} = 1.</math>
* В геометрии Лобачевского теорема Менелая приобретает вид
* В [[Геометрия Лобачевского|геометрии Лобачевского]] теорема Менелая приобретает вид
: <math>\frac{\operatorname{sh} |AB'|}{\operatorname{sh} |B'C|}\cdot\frac{\operatorname{sh} |CA'|}{\operatorname{sh} |A'B|}\cdot\frac{\operatorname{sh} |BC'|}{\operatorname{sh} |C'A|} = 1.</math>
: <math>\frac{\operatorname{sh} |AB'|}{\operatorname{sh} |B'C|}\cdot\frac{\operatorname{sh} |CA'|}{\operatorname{sh} |A'B|}\cdot\frac{\operatorname{sh} |BC'|}{\operatorname{sh} |C'A|} = 1.</math>



Версия от 04:12, 22 октября 2020

Теоре́ма Менела́я или теорема о трансверсалях или теорема о полном четырёхстороннике — классическая теорема аффинной геометрии.

Формулировка

Если точки и лежат соответственно на сторонах и треугольника или на их продолжениях[1], то они коллинеарны тогда и только тогда, когда

где , и обозначают отношения направленных отрезков.

Замечания

  • В частности, из теоремы следует соотношение для длин отрезков:

Вариации и обобщения

  • Тригонометрический эквивалент:
, где все углы — ориентированные.

История

Эта теорема доказывается в третьей книге «Сферики» Менелая Александрийского (около 100 года нашей эры). Менелай сначала доказывает теорему для плоского случая, а потом центральным проектированием переносит её на сферу. Возможно, что плоский случай теоремы рассматривался ранее в несохранившихся «Поризмах» Евклида.

Сферическая теорема Менелая была основным средством, с помощью которого решались разнообразные прикладные задачи позднеантичной и средневековой астрономии и геодезии. Ей посвящён ряд сочинений под названием «Книга о фигуре секущих», составленных такими математиками средневекового Востока, как Сабит ибн Корра, ан-Насави, ал-Магриби, ас-Сиджизи, ас-Салар, Джабир ибн Афлах, Насир ад-Дин ат-Туси.

Итальянский математик Джованни Чева в 1678 году предложил доказательство теоремы Менелая и родственной ей теоремы Чевы для плоского случая, основанное на рассмотрении центра тяжести системы из трёх точечных грузов.[2]

Применения

См. также

Примечания

  1. на самих сторонах может лежать ровно две или ни одной точки
  2. G. Ceva, De lineis rectis se invicem secantibus, statica constructio Milan, 1678

Ссылки