Двойственное пространство: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
→‎Определение: это до сих пор никто не написал???
Строка 7: Строка 7:


В [[тензорное исчисление|тензорном исчислении]] применяется обозначение <math>x^k</math> для элементов <math>E</math> (верхний, или ''контравариантный'' индекс) и <math>x_k</math> для элементов <math>E^*</math> (нижний, или ''ковариантный'' индекс).
В [[тензорное исчисление|тензорном исчислении]] применяется обозначение <math>x^k</math> для элементов <math>E</math> (верхний, или ''контравариантный'' индекс) и <math>x_k</math> для элементов <math>E^*</math> (нижний, или ''ковариантный'' индекс).

== Двойственные отображения ==
'''''Двойственное отображение''''' — [[линейное отображение]] между [[Векторное пространство|векторными пространствами]], двойственными к данным, индуцированное отображением между самими пространствами.

Пусть <math>V, W</math> — векторные пространства, а <math>V^*, W^* </math> — двойственные векторные пространства. Для любого линейного отображения <math>f : V \to W</math> двойственное отображение <math>f^*: W^* \to V^*</math> (в обратном порядке) определяется как
: <math>f^*(\varphi) = \varphi \circ f \,</math>
для любого <math>\varphi \in W^*</math>.


== Свойства ==
== Свойства ==

Версия от 19:30, 9 сентября 2018

Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.

Определение

Множество всех непрерывных линейных функционалов, определённых на топологическом векторном пространстве , также образует векторное пространство. Это пространство называется сопряжённым к , оно обычно обозначается . Множество всех линейных функционалов на , не обязательно непрерывных, называется алгебраически сопряжённым к , оно обычно обозначается .[1]

В случае (рассматриваемом обычно в линейной алгебре), когда векторное пространство конечномерное, все линейные функционалы автоматически являются непрерывными, и сопряжённое пространство состоит просто из всех линейных функционалов (функций) на . В случае (рассматриваемом обычно в функциональном анализе), когда бесконечномерное, вообще говоря, .[1]

В тензорном исчислении применяется обозначение для элементов (верхний, или контравариантный индекс) и для элементов (нижний, или ковариантный индекс).

Двойственные отображения

Двойственное отображениелинейное отображение между векторными пространствами, двойственными к данным, индуцированное отображением между самими пространствами.

Пусть  — векторные пространства, а  — двойственные векторные пространства. Для любого линейного отображения двойственное отображение (в обратном порядке) определяется как

для любого .

Свойства

Конечномерные пространства[2]

  • Сопряжённое пространство имеет ту же размерность, что и пространство над полем . Следовательно, пространства и изоморфны.
  • Каждому базису пространства можно поставить в соответствие так называемый двойственный (или взаимный) базис пространства , где функционал  — проектор на вектор :
  • Если пространство евклидово, то есть на нём определено скалярное произведение, то между и существует так называемый канонический изоморфизм, определённый соотношением
  • Второе сопряжённое пространство изоморфно . Более того, существует канонический изоморфизм между и (при этом не предполагается, что пространство евклидово), определённый соотношением
  • Определенный выше канонический изоморфизм показывает, что пространства и играют симметричную роль: каждое из них является сопряженным к другому. Для того, чтобы выделить эту симметрию, для часто пишут подобно записи скалярного произведения.

Бесконечномерные пространства

  • Если векторное пространство нормированное, то сопряжённое пространство имеет естественную норму — это операторная норма непрерывных функционалов. Пространство  — банахово[3][1].
  • Если пространство гильбертово, то по теореме Рисса существует изоморфизм между и , причём, аналогично конечномерному случаю, каждый линейный ограниченный функционал может быть представлен через скалярное произведение с помощью некоторого элемента пространства [4].
  • Сопряжённым к пространству , , является пространство , где . Аналогично, сопряжённым к , , является с тем же соотношением между p и q.

Вариации и обобщения

  • Термин сопряжённое пространство может иметь иное значение для векторных пространств над полем комплексных чисел: пространство , совпадающее с как вещественное векторное пространство, но с другой структурой умножения на комплексные числа:
  • При наличии в пространстве эрмитовой метрики (например, в гильбертовом пространстве) линейно-сопряжённое и комплексно-сопряжённое пространства совпадают.

См. также

Примечания

  1. 1 2 3 Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — Любое издание.
  2. Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия. — гл. III, § 7. — М.: Физматлит, 2009.
  3. Люстерник Л. А., Соболев В. И. Элементы функционального анализа, 2-ое изд. М.: Наука, 1965, стр. 147.
  4. Халмош П. Теория меры. М.: Издательство иностранной литературы, 1953.

Литература