Герметичная оболочка: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
дополнение, иллюстрация
м заточил примечания под ХС, оформление, раздел литература
Строка 1: Строка 1:
{{Глубокоэшелонированная защита реактора}}
{{Глубокоэшелонированная защита реактора}}
'''Гермооболочка''' (''герметичная оболочка''; ''защитная оболочка''; ''контейнмент'', от {{lang-en|containment}}) — пассивная система безопасности энергетических [[Ядерный реактор|ядерных реакторов]], главной функцией которой является предотвращение выхода [[Радиоактивный элемент|радиоактивных веществ]] в окружающую среду при тяжёлых авариях. Гермооболочка представляет собой массивное сооружение особой конструкции, в котором располагается основное оборудование [[Реакторная установка|реакторной установки]]. Гермооболочка является наиболее характерным в архитектурном плане и важнейшим с точки зрения безопасности зданием [[Атомная электростанция|атомных электростанций]], последним физическим барьером на пути распространения радиоактивности<ref name="state-of-art">{{книга
'''Гермооболочка''' (''герметичная оболочка''; ''защитная оболочка''; ''контейнмент'', от {{lang-en|containment}}) — пассивная система безопасности энергетических [[Ядерный реактор|ядерных реакторов]], главной функцией которой является предотвращение выхода [[Радиоактивный элемент|радиоактивных веществ]] в окружающую среду при тяжёлых авариях. Гермооболочка представляет собой массивное сооружение особой конструкции, в котором располагается основное оборудование [[Реакторная установка|реакторной установки]]. Гермооболочка является наиболее характерным в архитектурном плане и важнейшим с точки зрения безопасности зданием [[Атомная электростанция|атомных электростанций]], последним физическим барьером на пути распространения радиоактивности<ref name="NC1">{{книга
|автор =
|часть =
|заглавие = Nuclear containments: state-of-art report
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|ответственный =
|издание =
|место = Stuttgart
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|год = 2001
|volume =
|pages = 1
|pages =
|allpages = 117
|allpages = 117
|серия =
|isbn = 2-883-94-053-3
|isbn = 2-883-94-053-3
|тираж =
}}</ref><ref>{{книга
}}</ref><ref>{{книга
|автор = Кайоль А., Щапю К., Щоссидон Ф., Кюра Б., Дюонг П., Пелль П., Рище Ф., Воронин Л. М., Засорин Р. Е., Иванов Е. С., Козенюк А. А., Куваев Ю. Н., Филимонцев Ю. Н.
|автор = Кайоль А., Щапю К., Щоссидон Ф., Кюра Б., Дюонг П., Пелль П., Рище Ф., Воронин Л. М., Засорин Р. Е., Иванов Е. С., Козенюк А. А., Куваев Ю. Н., Филимонцев Ю. Н.
Строка 24: Строка 17:
|издательство = [[Électricité de France|EDF]]-EPN-DSN
|издательство = [[Électricité de France|EDF]]-EPN-DSN
|год = 1994
|год = 1994
|страницы =
|страницы = 29—31
|страниц = 256
|страниц = 256
|isbn = 2-7240-0090-0
|isbn = 2-7240-0090-0
Строка 35: Строка 28:
|издательство = [[Американское общество инженеров-механиков|ASME]]
|издательство = [[Американское общество инженеров-механиков|ASME]]
|год = 2005
|год = 2005
|pages =
|pages = 165—166
|allpages = 275
|allpages = 275
|isbn = 0-7918-0222-1
|isbn = 0-7918-0222-1
Строка 41: Строка 34:
}}</ref>.
}}</ref>.


Практически все энергоблоки, строившиеся последние несколько десятилетий, оснащены защитными оболочками. Их применение необходимо для защиты в случае внутренней аварии с разрывом крупных [[трубопровод]]ов и потерей [[Теплоноситель ядерного реактора|теплоносителя]] ({{lang-en|LOCA, [[:en:Loss-of-coolant accident|Loss-of-coolant accident]]}}), а также в случае внешних событий: [[землетрясение|землетрясений]], [[цунами]], [[ураган]]ов, [[смерч]]ей, падений [[самолёт]]ов, [[взрыв]]ов, ракетных ударов и т.д<ref name="state-of-art" /><ref name="Environmental">{{книга
Практически все энергоблоки, строившиеся последние несколько десятилетий, оснащены защитными оболочками. Их применение необходимо для защиты в случае внутренней аварии с разрывом крупных [[трубопровод]]ов и потерей [[Теплоноситель ядерного реактора|теплоносителя]] ({{lang-en|LOCA, [[:en:Loss-of-coolant accident|Loss-of-coolant accident]]}}), а также в случае внешних событий: [[землетрясение|землетрясений]], [[цунами]], [[ураган]]ов, [[смерч]]ей, падений [[самолёт]]ов, [[взрыв]]ов, ракетных ударов и т.д<ref name="NC1" /><ref name="Environmental">{{книга
|автор = Swarup R., Mishra S. N., Jauhari V. P.
|автор = Swarup R., Mishra S. N., Jauhari V. P.
|часть =
|часть =
Строка 50: Строка 43:
|год = 1992
|год = 1992
|volume =
|volume =
|pages =
|pages = 68—79
|allpages = 329
|allpages = 329
|серия =
|серия =
Строка 65: Строка 58:
|год = 1989
|год = 1989
|том =
|том =
|страницы =
|страницы = 26—27
|страниц = 280
|страниц = 280
|серия =
|серия =
Строка 86: Строка 79:
}}</ref>.
}}</ref>.


В зависимости от типа реактора и специфических внешних угроз (например, сейсмичности) конструкция гермооболочек может сильно различаться. Большинство современных контейнментов (около 95 %) — оболочечные сооружения различного размера из [[бетон]]а, [[Армирование|армированного]] или [[Предварительно напряжённый железобетон|предварительно-напряжённого]], чаще всего цилиндрической формы<ref name="state-of-art" /><ref>{{статья
В зависимости от типа реактора и специфических внешних угроз (например, сейсмичности) конструкция гермооболочек может сильно различаться. Большинство современных контейнментов (около 95 %) — оболочечные сооружения различного размера из [[бетон]]а, [[Армирование|армированного]] или [[Предварительно напряжённый железобетон|предварительно-напряжённого]], чаще всего цилиндрической формы<ref name="NC1" /><ref>{{статья
| автор = Ray Nelson
| автор = Ray Nelson
| заглавие = Manufactured Meltdown
| заглавие = Manufactured Meltdown
Строка 102: Строка 95:
}}</ref>.
}}</ref>.


Герметичная оболочка — комплексная структура, в которую входят также системы сложных [[трубная проходка|трубных]] и [[Кабельная проходка|кабельных]] проходок большого размера. За гермооболочками ведут специальный технический надзор с регулярными [[Гидравлическое испытание#Пневматическое испытание|испытаниями]] их функций и [[Техническое освидетельствование|инспекциями государственных органов]]. К материалам, монтажу, наладке и эксплуатации предъявляются строгие требования<ref name="state-of-art" /><ref>{{книга
Герметичная оболочка — комплексная структура, в которую входят также системы сложных [[трубная проходка|трубных]] и [[Кабельная проходка|кабельных]] проходок большого размера. За гермооболочками ведут специальный технический надзор с регулярными [[Гидравлическое испытание#Пневматическое испытание|испытаниями]] их функций и [[Техническое освидетельствование|инспекциями государственных органов]]. К материалам, монтажу, наладке и эксплуатации предъявляются строгие требования<ref name="NC1" /><ref>{{книга
|заглавие = Nuclear powerplant standardization : light water reactors
|заглавие = Nuclear powerplant standardization : light water reactors
|ссылка = http://books.google.com/books?id=DNEDEbrk1RcC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|ссылка = http://books.google.com/books?id=DNEDEbrk1RcC&printsec=frontcover&hl=ru#v=onepage&q&f=false
Строка 108: Строка 101:
|издательство = [[:en:United States Government Printing Office|United States Government Printing Office]]
|издательство = [[:en:United States Government Printing Office|United States Government Printing Office]]
|год = 1981
|год = 1981
|pages =
|pages = 19—20
|allpages = 63
|allpages = 63
|isbn =
|isbn =
Строка 131: Строка 124:
| подпись3 = [[Ровенская АЭС]]. В советских реакторах [[ВВЭР-1000]] гермооболочку окружает сооружение со вспомогательными системами (обстройка).
| подпись3 = [[Ровенская АЭС]]. В советских реакторах [[ВВЭР-1000]] гермооболочку окружает сооружение со вспомогательными системами (обстройка).
}}
}}
В гермооболочках [[Водо-водяной ядерный реактор|водо-водяных реакторов]] располагается основное оборудование [[Реакторная установка|реакторной установки]]: реактор, циркуляционные петли [[первый контур (АЭС)|первого контура]], главные циркуляционные насосы, [[парогенератор]]ы, а также центральный зал, [[бассейн выдержки топлива|бассейн выдержки]] [[Отработавшее ядерное топливо|отработавшего топлива]], [[Мостовой кран кругового действия|полярный кран]], некоторые вспомогательные системы и другое оборудование. Почти все использующиеся гермооболочки так называемого «сухого» типа<ref name="state-of-art" /><ref name="Energy" />.
В гермооболочках [[Водо-водяной ядерный реактор|водо-водяных реакторов]] располагается основное оборудование [[Реакторная установка|реакторной установки]]: реактор, циркуляционные петли [[первый контур (АЭС)|первого контура]], главные циркуляционные насосы, [[парогенератор]]ы, а также центральный зал, [[бассейн выдержки топлива|бассейн выдержки]] [[Отработавшее ядерное топливо|отработавшего топлива]], [[Мостовой кран кругового действия|полярный кран]], некоторые вспомогательные системы и другое оборудование. Почти все использующиеся гермооболочки так называемого «сухого» типа<ref name="NC911">{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|pages = 9—11
|allpages = 117
|isbn = 2-883-94-053-3
}}</ref><ref name="Energy" />.


Для водо-водяных реакторов главным фактором, обуславливающим необходимость гермооболочки, является необходимость восприятия нагрузки из-за повышения давления, связанного с разрывом [[трубопровод]]ов первого контура. В контейнменте всегда поддерживается небольшое [[разрежение]] для смягчения действия ударной волны. Главной вспомогательной системой является [[спринклерная система (АЭС)|спринклерная система]], обеспечивающая распыление холодной воды из [[Форсунка|форсунок]] под куполом для конденсации пара и снижения таким образом давления<ref name="Bulletin" /><ref name="Thermal">{{книга
Для водо-водяных реакторов главным фактором, обуславливающим необходимость гермооболочки, является необходимость восприятия нагрузки из-за повышения давления, связанного с разрывом [[трубопровод]]ов первого контура. В контейнменте всегда поддерживается небольшое [[разрежение]] для смягчения действия ударной волны. Главной вспомогательной системой является [[спринклерная система (АЭС)|спринклерная система]], обеспечивающая распыление холодной воды из [[Форсунка|форсунок]] под куполом для конденсации пара и снижения таким образом давления<ref name="Bulletin" /><ref name="Thermal">{{книга
Строка 142: Строка 145:
|год = 2008
|год = 2008
|volume =
|volume =
|pages =
|pages = 142—149
|allpages = 388
|allpages = 388
|серия =
|серия =
|isbn = 978-1-84564-062-0
|isbn = 978-1-84564-062-0
|тираж =
|тираж =
}}</ref><ref name="Guidebook">{{книга
}}</ref><ref>{{книга
|автор = Anthony V. Nero, jr
|автор = Anthony V. Nero, jr
|заглавие = A Guidebook to Nuclear Reactors
|заглавие = A Guidebook to Nuclear Reactors
Строка 154: Строка 157:
|издательство = [[:en:University of California Press|University of California Press]]
|издательство = [[:en:University of California Press|University of California Press]]
|год = 1979
|год = 1979
|pages =
|pages = 86—92
|allpages = 281
|allpages = 281
|серия =
|серия =
Строка 161: Строка 164:
}}</ref>.
}}</ref>.


[[Железобетон]]ные и [[Предварительно напряжённый железобетон|предварительно-напряжённые]] оболочки впервые появились в США. Первая, железобетонная, была сооружена на {{не переведено 3|АЭС Коннектикут Янки|АЭС Коннектикут Янки|en|Connecticut Yankee Nuclear Power Plant}}, которая была введена в работу в [[1968 год]]у. Предварительное напряжение было впервые применено на {{не переведено 3|АЭС Роберт Е. Джинна|АЭС Роберт Е. Джинна|en|Ginna Nuclear Generating Station}} (пуск в [[1969 год]]у), но лишь частичное, вертикальное в стенах. Полное предварительное напряжение стен и купола было впервые применено на {{не переведено 3|АЭС Палисадес|АЭС Палисадес|en|Palisades Nuclear Generating Station}} (пуск в [[1971 год]]у). Затем практика строительства гермооболочек из предварительно-напряжённого железобетона стала всё шире распространяться в США, Канаде, Японии, Бельгии ({{не переведено 3|АЭС Тианж|АЭС Тианж|en|Tihange Nuclear Power Station}}, блок 1, [[1975 год]]), Франции ({{не переведено 3|АЭС Фессенхейм|АЭС Фессенхейм|fr|Centrale nucléaire de Fessenheim}}, блоки 1—2, [[1977 год]]), СССР. Первое применение такой гермооболочки в советском реакторостроении — {{не переведено 3|АЭС Ловииса|АЭС Ловииса|en|Loviisa Nuclear Power Plant}} c реакторами [[ВВЭР-440]] в [[Атомная энергетика Финляндии|Финляндии]] (первый блок пущен в [[1977 год]]у), затем, начиная с [[Нововоронежская АЭС|Нововоронежской АЭС]] (блок 5, пуск в 1980) в СССР строились блоки с [[ВВЭР-1000]], оснащённые гермооболочками<ref name="state-of-art" /><ref>{{книга
[[Железобетон]]ные и [[Предварительно напряжённый железобетон|предварительно-напряжённые]] оболочки впервые появились в США. Первая, железобетонная, была сооружена на {{не переведено 3|АЭС Коннектикут Янки|АЭС Коннектикут Янки|en|Connecticut Yankee Nuclear Power Plant}}, которая была введена в работу в [[1968 год]]у. Предварительное напряжение было впервые применено на {{не переведено 3|АЭС Роберт Е. Джинна|АЭС Роберт Е. Джинна|en|Ginna Nuclear Generating Station}} (пуск в [[1969 год]]у), но лишь частичное, вертикальное в стенах. Полное предварительное напряжение стен и купола было впервые применено на {{не переведено 3|АЭС Палисадес|АЭС Палисадес|en|Palisades Nuclear Generating Station}} (пуск в [[1971 год]]у). Затем практика строительства гермооболочек из предварительно-напряжённого железобетона стала всё шире распространяться в США, Канаде, Японии, Бельгии ({{не переведено 3|АЭС Тианж|АЭС Тианж|en|Tihange Nuclear Power Station}}, блок 1, [[1975 год]]), Франции ({{не переведено 3|АЭС Фессенхейм|АЭС Фессенхейм|fr|Centrale nucléaire de Fessenheim}}, блоки 1—2, [[1977 год]]), СССР. Первое применение такой гермооболочки в советском реакторостроении — [[АЭС Ловииса]] c реакторами [[ВВЭР-440]] в [[Атомная энергетика Финляндии|Финляндии]] (первый блок пущен в [[1977 год]]у), затем, начиная с [[Нововоронежская АЭС|Нововоронежской АЭС]] (блок 5, пуск в 1980) в СССР строились блоки с [[ВВЭР-1000]], оснащённые гермооболочками<ref name="NC911" /><ref>{{книга
|автор = Андрюшин И. А., Чернышёв А. К., Юдин Ю. А.
|автор = Андрюшин И. А., Чернышёв А. К., Юдин Ю. А.
|заглавие = Укрощение ядра. Страницы истории ядерного оружия и ядерной инфраструктуры СССР
|заглавие = Укрощение ядра. Страницы истории ядерного оружия и ядерной инфраструктуры СССР
Строка 168: Строка 171:
|издательство =
|издательство =
|год = 2003
|год = 2003
|страницы = 354—356
|страниц = 481
|страниц = 481
|isbn = 5 7493 0621 6
|isbn = 5 7493 0621 6
Строка 185: Строка 189:
|год = 1994
|год = 1994
|volume =
|volume =
|pages =
|pages = 87
|allpages = 212
|allpages = 212
|серия =
|серия =
Строка 202: Строка 206:
}}</ref>.
}}</ref>.


Другие виды, кроме «сухих» гермооболочек, для водо-водяных реакторов последние десятилетия не сооружаются. Ранее в малом количестве использовалось ещё два типа, имевших меньшие размеры<ref name="state-of-art" />:
Другие виды, кроме «сухих» гермооболочек, для водо-водяных реакторов последние десятилетия не сооружаются. Ранее в малом количестве использовалось ещё два типа, имевших меньшие размеры<ref name="NC911" />:
* c ледовым конденсатором в пределах гермооболочки, который способен конденсировать пар в случае аварии (например, станции {{не переведено 3|АЭС Секвойя|Секвойя|en|Sequoyah Nuclear Generating Station}} и {{не переведено 3|АЭС Уоттс Бар|Уоттс Бар|en|Watts Bar Nuclear Generating Station}} в США)<ref name="Bulletin" />;
* c ледовым конденсатором в пределах гермооболочки, который способен конденсировать пар в случае аварии (например, станции {{не переведено 3|АЭС Секвойя|Секвойя|en|Sequoyah Nuclear Generating Station}} и {{не переведено 3|АЭС Уоттс Бар|Уоттс Бар|en|Watts Bar Nuclear Generating Station}} в США)<ref name="Bulletin" />;
* с глубоким разрежением в гермооболочке, для сглаживания резкого воздействия и частичной компенсации повышающегося давления при аварии.
* с глубоким разрежением в гермооболочке, для сглаживания резкого воздействия и частичной компенсации повышающегося давления при аварии.
Строка 217: Строка 221:
* внутренний диаметр от 37 до 45 метров;
* внутренний диаметр от 37 до 45 метров;
* толщина стен и купола от 0,8 до 1,3 метра;
* толщина стен и купола от 0,8 до 1,3 метра;
* толщина основания от 1 м (скальная порода или опора на специальное сооружение, как в реакторах [[ВВЭР-1000]]) до 5 м (недостаточно твёрдый грунт под основанием, высокая сейсмичность, предварительно-напряжённое основание)<ref name="state-of-art" />
* толщина основания от 1 м (скальная порода или опора на специальное сооружение, как в реакторах [[ВВЭР-1000]]) до 5 м (недостаточно твёрдый грунт под основанием, высокая сейсмичность, предварительно-напряжённое основание)<ref name="NC1922">{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|pages = 19—22
|allpages = 117
|isbn = 2-883-94-053-3
}}</ref>.


'''Проходки'''
'''Проходки'''


Оборудование внутри гермооболочки связано с многочисленными вспомогательными и аварийными системами снаружи, поэтому через стены необходим вход трубопроводов и кабелей, для чего в гермооболочке предусматривается система герметичных [[трубная проходка|трубных]] и [[Кабельная проходка|кабельных]] проходок различного размера. В среднем их около 120. Самым большими отверстиями являются: транспортный люк для загрузки/выгрузки оборудования и [[ядерное топливо|топлива]] — диаметр примерно 8 метров; основной и аварийные шлюзы для прохода персонала — по 3 метра; проходки [[паропровод]]ов — 1,3 метра<ref name="state-of-art" />.
Оборудование внутри гермооболочки связано с многочисленными вспомогательными и аварийными системами снаружи, поэтому через стены необходим вход трубопроводов и кабелей, для чего в гермооболочке предусматривается система герметичных [[трубная проходка|трубных]] и [[Кабельная проходка|кабельных]] проходок различного размера. В среднем их около 120. Самым большими отверстиями являются: транспортный люк для загрузки/выгрузки оборудования и [[ядерное топливо|топлива]] — диаметр примерно 8 метров; основной и аварийные шлюзы для прохода персонала — по 3 метра; проходки [[паропровод]]ов — 1,3 метра<ref name="NC1922" />.


'''Максимальные расчётные параметры при аварии'''
'''Максимальные расчётные параметры при аварии'''


* давление чаще всего 0,5 МПа;
* давление чаще всего 0,5 МПа;
* температура чаще всего 150 °C<ref name="state-of-art" />.
* температура чаще всего 150 °C<ref name="NC1922" />.


'''Напряжение и прочность'''
'''Напряжение и прочность'''


В среднем [[Механическое напряжение|напряжение]] цилиндрической части типичного предварительно-напряжённого контейнмента при нормальной эксплуатации — 10 МПа в тангециальном направлении и 7 МПа в вертикальном направлении, что обеспечивает прочность железобетона порядка 40 МПа<ref name="state-of-art" />.
В среднем [[Механическое напряжение|напряжение]] цилиндрической части типичного предварительно-напряжённого контейнмента при нормальной эксплуатации — 10 МПа в тангециальном направлении и 7 МПа в вертикальном направлении, что обеспечивает прочность железобетона порядка 40 МПа<ref name="NC1922" />.


'''Облицовка'''
'''Облицовка'''


Внутренняя облицовка, если она имеется, чаще всего из стали, толщиной 6…8 мм. Облицовка требуется для улучшения герметизации и большей устойчивости к нагрузкам<ref name="state-of-art" />.
Внутренняя облицовка, если она имеется, чаще всего из стали, толщиной 6…8 мм. Облицовка требуется для улучшения герметизации и большей устойчивости к нагрузкам<ref name="NC1922" />.


'''Расход материалов'''
'''Расход материалов'''
Строка 240: Строка 254:
Указанные величины сильно разнятся в зависимости от проекта.
Указанные величины сильно разнятся в зависимости от проекта.


Одиночная оболочка с облицовкой (для энергоблока мощностью около 900 МВт)<ref name="state-of-art" />:
Одиночная оболочка с облицовкой (для энергоблока мощностью около 900 МВт)<ref name="NC1922" />:
{| class="standard" style="text-align:center"
{| class="standard" style="text-align:center"
|-
|-
Строка 269: Строка 283:
|}
|}


Двойная оболочка без облицовки (для энергоблока мощностью около 1400 МВт)<ref name="state-of-art" />:
Двойная оболочка без облицовки (для энергоблока мощностью около 1400 МВт)<ref name="NC1922" />:


{| class="standard" style="text-align:center"
{| class="standard" style="text-align:center"
Строка 303: Строка 317:
Большинство кипящих реакторов работают в США, Японии (компания [[General Electric]] и её лицензиаты, [[Toshiba]] и [[Hitachi]]), Швеции (компания [[ABB]]) и Германии (компания {{не переведено 3|Kraftwerk Union|Kraftwerk Union|de|Kraftwerk Union}}).
Большинство кипящих реакторов работают в США, Японии (компания [[General Electric]] и её лицензиаты, [[Toshiba]] и [[Hitachi]]), Швеции (компания [[ABB]]) и Германии (компания {{не переведено 3|Kraftwerk Union|Kraftwerk Union|de|Kraftwerk Union}}).


Все кипящие реакторы проектируются с системами снижения давления в гермооболочке. Контейнмент состоит из двух главных частей — сухой шахты (сухого бокса) реактора ({{lang-en|dry-well}}) и [[бак-барботёр|бака-барботёра]] ({{lang-en|wet-well}}). В случае аварии с потерей теплоносителя в пределах гермообъёма, пар направляется с помощью козырьков (направляющих аппаратов) в бак-барботёр с водой, где происходит его конденсация. В дополнение имеются также системы с распылением воды в гермообъёме. В связи с такой конструкцией объёмы оболочек довольно малы — около 1/6 размера от «сухой» оболочки водо-водяных реакторов. Почти все вспомогательные системы располагаются в здании, окружающем гермооболочку. Это здание выполняет роль второго контайнмента ({{lang-en|secondary containment}}), в нём поддерживается слабое разрежение<ref name="state-of-art" /><ref name="str">{{cite web
Все кипящие реакторы проектируются с системами снижения давления в гермооболочке. Контейнмент состоит из двух главных частей — сухой шахты (сухого бокса) реактора ({{lang-en|dry-well}}) и [[бак-барботёр|бака-барботёра]] ({{lang-en|wet-well}}). В случае аварии с потерей теплоносителя в пределах гермообъёма, пар направляется с помощью козырьков (направляющих аппаратов) в бак-барботёр с водой, где происходит его конденсация. В дополнение имеются также системы с распылением воды в гермообъёме. В связи с такой конструкцией объёмы оболочек довольно малы — около 1/6 размера от «сухой» оболочки водо-водяных реакторов. Почти все вспомогательные системы располагаются в здании, окружающем гермооболочку. Это здание выполняет роль второго контайнмента ({{lang-en|secondary containment}}), в нём поддерживается слабое разрежение<ref name="NC1215">{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|pages = 12—15
|allpages = 117
|isbn = 2-883-94-053-3
}}</ref><ref name="str">{{cite web
| url = https://netfiles.uiuc.edu/mragheb/www/NPRE%20457%20CSE%20462%20Safety%20Analysis%20of%20Nuclear%20Reactor%20Systems/Containment%20Structures.pdf
| url = https://netfiles.uiuc.edu/mragheb/www/NPRE%20457%20CSE%20462%20Safety%20Analysis%20of%20Nuclear%20Reactor%20Systems/Containment%20Structures.pdf
| title = Containment structures
| title = Containment structures
Строка 312: Строка 336:
| accessdate = 2011-03-21
| accessdate = 2011-03-21
| lang = en
| lang = en
}}</ref><ref name="Guidebook" />.
}}</ref><ref name="Guidebook103107">{{книга
|автор = Anthony V. Nero, jr
|заглавие = A Guidebook to Nuclear Reactors
|ссылка = http://books.google.com/books?id=O0YB-T9usjIC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Berkeley, Los Angeles, London
|издательство = [[:en:University of California Press|University of California Press]]
|год = 1979
|pages = 103—107
|allpages = 281
|серия =
|isbn = 0-520-03482-1
|тираж =
}}</ref>.


Большинство первых проектов [[General Electric]] и её лицензиатов в различных странах имеют бетонный контейнмент со стальной внутренней оболочкой грушевидной формы, отделяющей сухой бокс от бака-барботёра. В Скандинавии, блоки компании [[ABB]], например в Швеции и Финляндии ({{не переведено 3|АЭС Олкилуото|АЭС Олкилуото|en|Olkiluoto Nuclear Power Plant}}), оснащены гермооболочками из предварительно-напряжённого железобетона со стальной облицовкой, закрытого в верхней части стальным куполом. Основание и верхняя часть предварительно-напряжены лишь частично. В Германии энергоблоки {{не переведено 3|Kraftwerk Union|Kraftwerk Union|de|Kraftwerk Union}} первоначально оснащались стальными полусферическими гермооболочками, затем проектные решения изменились на цилиндрические оболочки из предварительно-напряжённого железобетона со стальной облицовкой и дополнительной защитой от падения самолётов в верхней части (блоки B и C {{не переведено 3|АЭС Гундремминген|АЭС Гундремминген|en|Gundremmingen Nuclear Power Plant}}). В энергоблоках с [[Улучшенный кипящий ядерный реактор|улучшенными кипящими реакторами]], которые строит [[General Electric]] и его лицензиаты в Японии и Тайване, гермооблочка интегрирована в здание реакторного отделения таким образом, что уменьшился общий размер сооружения и увеличилась сейсмоустойчивость за счёт понижения центра тяжести<ref name="state-of-art" /><ref name="str" /><ref name="Guidebook" />.
Большинство первых проектов [[General Electric]] и её лицензиатов в различных странах имеют бетонный контейнмент со стальной внутренней оболочкой грушевидной формы, отделяющей сухой бокс от бака-барботёра. В Скандинавии, блоки компании [[ABB]], например в Швеции и Финляндии ({{не переведено 3|АЭС Олкилуото|АЭС Олкилуото|en|Olkiluoto Nuclear Power Plant}}), оснащены гермооболочками из предварительно-напряжённого железобетона со стальной облицовкой, закрытого в верхней части стальным куполом. Основание и верхняя часть предварительно-напряжены лишь частично. В Германии энергоблоки {{не переведено 3|Kraftwerk Union|Kraftwerk Union|de|Kraftwerk Union}} первоначально оснащались стальными полусферическими гермооболочками, затем проектные решения изменились на цилиндрические оболочки из предварительно-напряжённого железобетона со стальной облицовкой и дополнительной защитой от падения самолётов в верхней части (блоки B и C {{не переведено 3|АЭС Гундремминген|АЭС Гундремминген|en|Gundremmingen Nuclear Power Plant}}). В энергоблоках с [[Улучшенный кипящий ядерный реактор|улучшенными кипящими реакторами]], которые строит [[General Electric]] и его лицензиаты в Японии и Тайване, гермооблочка интегрирована в здание реакторного отделения таким образом, что уменьшился общий размер сооружения и увеличилась сейсмоустойчивость за счёт понижения центра тяжести<ref name="NC1215" /><ref name="str" /><ref name="Guidebook103107" />.


Для решения проблемы скопления водорода, которая стоит в кипящих реакторах значительно острее из-за меньших размеров оболочки, в ранних конструкциях контейнментов применяется заполнение сухой шахты реактора инертным газом (например, чистым [[азот]]ом), в более поздних проектах предусматриваются системы дожигания водорода<ref name="Bulletin" /><ref>{{книга
Для решения проблемы скопления водорода, которая стоит в кипящих реакторах значительно острее из-за меньших размеров оболочки, в ранних конструкциях контейнментов применяется заполнение сухой шахты реактора инертным газом (например, чистым [[азот]]ом), в более поздних проектах предусматриваются системы дожигания водорода<ref name="Bulletin" /><ref>{{книга
Строка 323: Строка 359:
|издательство = [[Academic Press]]
|издательство = [[Academic Press]]
|год = 1997
|год = 1997
|pages =
|pages = 308
|allpages = 357
|allpages = 357
|isbn = 0-12-020029-5
|isbn = 0-12-020029-5
Строка 333: Строка 369:
'''Геометрия'''
'''Геометрия'''


Типичная оболочка — цилиндр (часто с шарообразным утолщением в нижней части), установленный на массивной плите и увенчанный плитой из предварительно-напряжённого железобетона со съёмным металлическим колпаком для доступа к реактору. Внутренний диаметр обычно 26, высота 35 метров, у ABWR — диаметр на 3 метра больше при 29,5-метровой высоте.
Типичная оболочка — цилиндр (часто с шарообразным утолщением в нижней части), установленный на массивной плите и увенчанный плитой из предварительно-напряжённого железобетона со съёмным металлическим колпаком для доступа к реактору. Внутренний диаметр обычно 26, высота 35 метров, у ABWR — диаметр на 3 метра больше при 29,5-метровой высоте<ref name="NC24">{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|pages = 24
|allpages = 117
|isbn = 2-883-94-053-3
}}</ref>.


'''Проходки'''
'''Проходки'''


Количество отверстий — около 100, причём под транспортный люк (самое большое у PWR) отсутствует. Шлюзы для персонала имеют диаметр 2,5 метра.
Количество отверстий — около 100, причём под транспортный люк (самое большое у PWR) отсутствует. Шлюзы для персонала имеют диаметр 2,5 метра<ref name="NC24" />.


'''Максимальные расчётные параметры при аварии'''
'''Максимальные расчётные параметры при аварии'''


Расчётные параметры в среднем несколько выше, чем у PWR: давление — обычно 0,6 МПа, температура — 170 °С.
Расчётные параметры в среднем несколько выше, чем у PWR: давление — обычно 0,6 МПа, температура — 170 °С<ref name="NC24" />.


'''Облицовка'''
'''Облицовка'''


Внутренняя облицовка из стали толщиной 6…10 мм.
Внутренняя облицовка из стали толщиной 6…10 мм<ref name="NC24" />.


=== Тяжёловодные реакторы ===
=== Тяжёловодные реакторы ===
Строка 352: Строка 398:
[[Тяжеловодный ядерный реактор|Тяжёловодные реакторы]] в основном известны под названием [[CANDU]], это канадское национальное направление. Эти реакторы Канада также строила в Южной Корее, Пакистане, Румынии, Китае и Аргентине. Другое государство, где реакторы этого типа являются национальным направлением, — Индия. Также их строил немецкий {{не переведено 3|Kraftwerk Union|Kraftwerk Union|de|Kraftwerk Union}}, например на {{не переведено 3|АЭС Атуча|АЭС Атуча|en|Atucha I Nuclear Power Plant}} в Аргентине.
[[Тяжеловодный ядерный реактор|Тяжёловодные реакторы]] в основном известны под названием [[CANDU]], это канадское национальное направление. Эти реакторы Канада также строила в Южной Корее, Пакистане, Румынии, Китае и Аргентине. Другое государство, где реакторы этого типа являются национальным направлением, — Индия. Также их строил немецкий {{не переведено 3|Kraftwerk Union|Kraftwerk Union|de|Kraftwerk Union}}, например на {{не переведено 3|АЭС Атуча|АЭС Атуча|en|Atucha I Nuclear Power Plant}} в Аргентине.


Примером стандартного для CANDU дизайна гермооболочек могут послужить четыре энергоблока {{не переведено 3|АЭС Пикеринг|АЭС Пикеринг|en|Pickering Nuclear Generating Station}}. Все их цилиндрические оболочки, в которых находятся оборудование первого контура и парогенераторы, соединены с отдельно стоящим специальным «вакуумным» сооружением объёмом 82 000 м³, в котором поддерживается разрежение 0,007 МПа. В случае аварии с повышением давления в гермооболочке одного из блоков, происходит разрыв [[Мембранное предохранительное устройство|мембраны]] на трубопроводе и аварийный блок соединяется с вакуумным сооружением. Таким образом избыточное давление полностью сбрасывается менее, чем за 30 секунд, даже в случае несрабатывания аварийных систем энергоблоков. И гермооболочки, и вакуумное сооружение оснащены спринклерными (распылительными) и вентиляционными системами для конденсации пара и снижения давления. Также в вакуумном сооружении имеется дополнительный бак с аварийным запасом воды для этих целей. Расчётное давление оболочек реакторов составляет 0,42 МПа с вакуумным сооружением и 0,19 МПа без него. Гермооболочки выполнены из предварительно-напряжённого железобетона, вакуумное сооружение — из железобетона. Внутренняя облицовка оболочек — из [[Резина|резины]] на основе [[Эпоксидная смола|эпоксидных смол]] и [[винил]]а, [[Армирование|армированной]] [[стеклопластик]]ом, вакуумное сооружение без облицовки. В более поздних проектах, например канадской {{не переведено 3|АЭС Брюс|АЭС Брюс|en|Bruce Nuclear Generating Station}}, облицовка оболочек выполнена стальной, а железобетон вакуумного сооружения предварительно напряжён<ref name="state-of-art" /><ref name="Guidebook" /><ref>{{книга
Примером стандартного для CANDU дизайна гермооболочек могут послужить четыре энергоблока {{не переведено 3|АЭС Пикеринг|АЭС Пикеринг|en|Pickering Nuclear Generating Station}}. Все их цилиндрические оболочки, в которых находятся оборудование первого контура и парогенераторы, соединены с отдельно стоящим специальным «вакуумным» сооружением объёмом 82 000 м³, в котором поддерживается разрежение 0,007 МПа. В случае аварии с повышением давления в гермооболочке одного из блоков, происходит разрыв [[Мембранное предохранительное устройство|мембраны]] на трубопроводе и аварийный блок соединяется с вакуумным сооружением. Таким образом избыточное давление полностью сбрасывается менее, чем за 30 секунд, даже в случае несрабатывания аварийных систем энергоблоков. И гермооболочки, и вакуумное сооружение оснащены спринклерными (распылительными) и вентиляционными системами для конденсации пара и снижения давления. Также в вакуумном сооружении имеется дополнительный бак с аварийным запасом воды для этих целей. Расчётное давление оболочек реакторов составляет 0,42 МПа с вакуумным сооружением и 0,19 МПа без него. Гермооболочки выполнены из предварительно-напряжённого железобетона, вакуумное сооружение — из железобетона. Внутренняя облицовка оболочек — из [[Резина|резины]] на основе [[Эпоксидная смола|эпоксидных смол]] и [[винил]]а, [[Армирование|армированной]] [[стеклопластик]]ом, вакуумное сооружение без облицовки. В более поздних проектах, например канадской {{не переведено 3|АЭС Брюс|АЭС Брюс|en|Bruce Nuclear Generating Station}}, облицовка оболочек выполнена стальной, а железобетон вакуумного сооружения предварительно напряжён<ref name="NC1617">{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|pages = 16—17
|allpages = 117
|isbn = 2-883-94-053-3
}}</ref><ref>{{книга
|автор = Anthony V. Nero, jr
|заглавие = A Guidebook to Nuclear Reactors
|ссылка = http://books.google.com/books?id=O0YB-T9usjIC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Berkeley, Los Angeles, London
|издательство = [[:en:University of California Press|University of California Press]]
|год = 1979
|pages = 116
|allpages = 281
|серия =
|isbn = 0-520-03482-1
|тираж =
}}</ref><ref>{{книга
|заглавие = Canada enters the nuclear age: a technical history of Atomic Energy of Canada Limited as seen from its research laboratories
|заглавие = Canada enters the nuclear age: a technical history of Atomic Energy of Canada Limited as seen from its research laboratories
|ссылка = http://books.google.com/books?id=SkrVDKMconIC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|ссылка = http://books.google.com/books?id=SkrVDKMconIC&printsec=frontcover&hl=ru#v=onepage&q&f=false
Строка 358: Строка 426:
|издательство = [[:en:Atomic Energy of Canada Limited|AECL]]
|издательство = [[:en:Atomic Energy of Canada Limited|AECL]]
|год = 1997
|год = 1997
|pages =
|pages = 314—318
|allpages = 439
|allpages = 439
|isbn = 0-7735-1601-8
|isbn = 0-7735-1601-8
Строка 364: Строка 432:
}}</ref>.
}}</ref>.


Гермооболочки индийских реакторов развивались в другом направлении. В отличие от канадских реакторов, индийские оболочки двойные, без внутренней облицовки и с баком-барботёром в гермообъёме. Контейнмент разделён водонепроницаемыми перегородками на сухой бокс и бак-барботёр. В случае аварии пароводяная смесь через вентиляционную систему сбрасывается из сухого бокса в бак-барботёр и конденсируется. Блоки {{не переведено 3|АЭС Раджастан|АЭС Раджастан|en|Rajasthan Atomic Power Station}} (пуск в [[1981 год]]у) стал первым в Индии из предварительно-напряжённого железобетона (только купол, стены — из железобетона). В последующем проекте, {{не переведено 3|АЭС Мадрас|АЭС Мадрас|en|Madras Atomic Power Station}}, применено разделение объёмов на сухой бокс и барботёр. Гермооболочки энергоблоков этой станции частично двойные, внутренняя оболочка из предварительно-напряжённого, а внешняя — из монолитного, не армированного бетона. Следующим этапом эволюции стали гермооболочки {{не переведено 3|АЭС Нарора|АЭС Нарора|en|Narora Atomic Power Station}}, в которых внешняя оболочка выполнена из железобетона. Затем, на {{не переведено 3|АЭС Какрапар|АЭС Какрапар|en|Kakrapar Atomic Power Station}} внешний купол был выполнен съёмным для возможности замены парогенераторов. Этот дизайн с небольшими изменениями использовался на множестве индийских энергоблоков<ref name="state-of-art" />.
Гермооболочки индийских реакторов развивались в другом направлении. В отличие от канадских реакторов, индийские оболочки двойные, без внутренней облицовки и с баком-барботёром в гермообъёме. Контейнмент разделён водонепроницаемыми перегородками на сухой бокс и бак-барботёр. В случае аварии пароводяная смесь через вентиляционную систему сбрасывается из сухого бокса в бак-барботёр и конденсируется. Блоки {{не переведено 3|АЭС Раджастан|АЭС Раджастан|en|Rajasthan Atomic Power Station}} (пуск в [[1981 год]]у) стал первым в Индии из предварительно-напряжённого железобетона (только купол, стены — из железобетона). В последующем проекте, {{не переведено 3|АЭС Мадрас|АЭС Мадрас|en|Madras Atomic Power Station}}, применено разделение объёмов на сухой бокс и барботёр. Гермооболочки энергоблоков этой станции частично двойные, внутренняя оболочка из предварительно-напряжённого, а внешняя — из монолитного, не армированного бетона. Следующим этапом эволюции стали гермооболочки {{не переведено 3|АЭС Нарора|АЭС Нарора|en|Narora Atomic Power Station}}, в которых внешняя оболочка выполнена из железобетона. Затем, на {{не переведено 3|АЭС Какрапар|АЭС Какрапар|en|Kakrapar Atomic Power Station}} внешний купол был выполнен съёмным для возможности замены парогенераторов. Этот дизайн с небольшими изменениями использовался на множестве индийских энергоблоков<ref name="NC1617" />.


=== Другие типы ===
=== Другие типы ===
[[Файл:Dounreay, Caithness, Scotland-30Aug2008.jpg|200px|thumb|Энергоблок закрытой {{не переведено 3|АЭС Донрэй|АЭС Донрэй|en|Dounreay}} (реактор на быстрых нейтронах) в Великобритании со стальной гермооболочкой]]
[[Файл:Dounreay, Caithness, Scotland-30Aug2008.jpg|200px|thumb|Энергоблок закрытой {{не переведено 3|АЭС Донрэй|АЭС Донрэй|en|Dounreay}} (реактор на быстрых нейтронах) в Великобритании со стальной гермооболочкой]]
[[реактор-размножитель|Реакторы-размножители]] [[Реактор на быстрых нейтронах|на быстрых нейтронах]] были разработаны и функционировали в нескольких странах (США, Японии, Великобритании, Франции, СССР), однако в настоящий момент работает лишь единственный в мире, [[БН]] на [[Белоярская АЭС|Белоярской АЭС]] в России. Так как теплоносителем в таких реакторах является жидкий металл, а не вода, гермооболочки, бетонные или стальные, расчитываются на значительно меньшее давление — 0,05—0,15 МПа<ref name="state-of-art" />.
[[реактор-размножитель|Реакторы-размножители]] [[Реактор на быстрых нейтронах|на быстрых нейтронах]] были разработаны и функционировали в нескольких странах (США, Японии, Великобритании, Франции, СССР), однако в настоящий момент работает лишь единственный в мире, [[БН]] на [[Белоярская АЭС|Белоярской АЭС]] в России. Так как теплоносителем в таких реакторах является жидкий металл, а не вода, гермооболочки, бетонные или стальные, расчитываются на значительно меньшее давление — 0,05—0,15 МПа<ref name="NC18">{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|pages = 18
|allpages = 117
|isbn = 2-883-94-053-3
}}</ref>.


[[Газоохлаждаемый реактор|Газоохлаждаемые реакторы]] ({{не переведено 3|Magnox|Magnox|en|Magnox}} и {{не переведено 3|AGR|AGR|en|Advanced gas-cooled reactor}}) — национальное направление в реакторостроении Великобритании. Такие реакторы не имеют гермооболочек. Основное оборудование в них интегрировано с [[Активная зона|активной зоной]] в корпус из предварительно-напряжённого железобетона, который таким образом играет роль контейнмента<ref name="state-of-art" />.
[[Газоохлаждаемый реактор|Газоохлаждаемые реакторы]] ({{не переведено 3|Magnox|Magnox|en|Magnox}} и {{не переведено 3|AGR|AGR|en|Advanced gas-cooled reactor}}) — национальное направление в реакторостроении Великобритании. Такие реакторы не имеют гермооболочек. Основное оборудование в них интегрировано с [[Активная зона|активной зоной]] в корпус из предварительно-напряжённого железобетона, который таким образом играет роль контейнмента<ref name="NC18" />.


[[Высокотемпературный газоохлаждаемый реактор|Высокотемпературные газоохлаждаемые реакторы]] строились в 60-е и все были закрыты к концу 80-х годов. В США компанией {{не переведено 3|General Atomics|General Atomics|en|General Atomics}} были построены несколько энергоблоков станций {{не переведено 3|АЭС Форт-Сент-Врейн|Форт-Сент-Врейн|en|Fort St. Vrain Generating Station}} и {{не переведено 3|АЭС Пич-Боттом|Пич-Боттом|en|Peach Bottom Nuclear Generating Station}}. Гермооболочки цилиндрической формы из железобетона c куполом, внутри находятся реактор из предварительно-напряжённого железобетона и основное оборудование. Расчётное давление — 0,35 МПа. В Германии действовал реактор {{не переведено 3|THTR-300|THTR-300|en|THTR-300}} компании {{не переведено 3|Nukem|Nukem|de|Nukem}} без гермооболочки, с цилиндрическим реактором из предварительно-напряжённого железобетона<ref name="state-of-art" />.
[[Высокотемпературный газоохлаждаемый реактор|Высокотемпературные газоохлаждаемые реакторы]] строились в 60-е и все были закрыты к концу 80-х годов. В США компанией {{не переведено 3|General Atomics|General Atomics|en|General Atomics}} были построены несколько энергоблоков станций {{не переведено 3|АЭС Форт-Сент-Врейн|Форт-Сент-Врейн|en|Fort St. Vrain Generating Station}} и {{не переведено 3|АЭС Пич-Боттом|Пич-Боттом|en|Peach Bottom Nuclear Generating Station}}. Гермооболочки цилиндрической формы из железобетона c куполом, внутри находятся реактор из предварительно-напряжённого железобетона и основное оборудование. Расчётное давление — 0,35 МПа. В Германии действовал реактор {{не переведено 3|THTR-300|THTR-300|en|THTR-300}} компании {{не переведено 3|Nukem|Nukem|de|Nukem}} без гермооболочки, с цилиндрическим реактором из предварительно-напряжённого железобетона<ref name="NC18" />.


В энергоблоках с реакторами [[РБМК]], которые строились в СССР, гермооболочки не использовались из-за больших размеров реактора. Роль контейнмента выполняет система бетонных боксов вокруг реактора, в которых находится основное оборудование, и бассейн-барботёр для сброса пара в случае аварийной ситуации<ref name="state-of-art" /><ref>{{книга
В энергоблоках с реакторами [[РБМК]], которые строились в СССР, гермооболочки не использовались из-за больших размеров реактора. Роль контейнмента выполняет система бетонных боксов вокруг реактора, в которых находится основное оборудование, и бассейн-барботёр для сброса пара в случае аварийной ситуации<ref name="NC18" /><ref>{{книга
|автор = [[Доллежаль, Николай Антонович|Доллежаль Н.А.]], Емельянов И.Я.
|автор = [[Доллежаль, Николай Антонович|Доллежаль Н.А.]], Емельянов И.Я.
|заглавие = Канальный ядерный энергетический реактор
|заглавие = Канальный ядерный энергетический реактор
Строка 381: Строка 459:
|издательство = [[Атомиздат]]
|издательство = [[Атомиздат]]
|год = 1980
|год = 1980
|pages =
|pages = 153—169
|allpages = 208
|allpages = 208
|тираж =
|тираж =
Строка 397: Строка 475:
|издательство = [[John Wiley & Sons]]
|издательство = [[John Wiley & Sons]]
|год = 2007
|год = 2007
|pages =
|pages = 150—153
|allpages = 229
|allpages = 229
|isbn = 978-0-470-05136-8
|isbn = 978-0-470-05136-8
Строка 450: Строка 528:
| issn = 0040-3636
| issn = 0040-3636
}}</ref>.
}}</ref>.

== Литература ==
*{{книга
|заглавие = Nuclear containments: state-of-art report
|оригинал =
|ссылка = http://books.google.com/books?id=zG66DdKdAVEC&printsec=frontcover&hl=ru#v=onepage&q&f=false
|место = Stuttgart
|издательство = [[:en:Fédération internationale du béton|Fédération internationale du béton]]
|год = 2001
|allpages = 117
|isbn = 2-883-94-053-3
}}
*{{книга
|заглавие = Structures for Nuclear Facilities
|автор = Bangash, M.Y.H.
|оригинал =
|ссылка = http://www.springer.com/materials/mechanics/book/978-3-642-12559-1
|место = Heidelberg, Dordrecht, London, New York
|издательство = [[Springer Science+Business Media|Springer]]
|год = 2011
|allpages = 457
|isbn = 978-3-642-12560-7
}}


== Примечания ==
== Примечания ==

Версия от 20:46, 13 сентября 2011

Глубокоэшелонированная защита реактора: физические барьеры
Языки мира
Языки мира
1 топливная таблетка
2 оболочка твэла
3 границы первого контура
4 биологическая защита
5 гермооболочка

Гермооболочка (герметичная оболочка; защитная оболочка; контейнмент, от англ. containment) — пассивная система безопасности энергетических ядерных реакторов, главной функцией которой является предотвращение выхода радиоактивных веществ в окружающую среду при тяжёлых авариях. Гермооболочка представляет собой массивное сооружение особой конструкции, в котором располагается основное оборудование реакторной установки. Гермооболочка является наиболее характерным в архитектурном плане и важнейшим с точки зрения безопасности зданием атомных электростанций, последним физическим барьером на пути распространения радиоактивности[1][2][3].

Практически все энергоблоки, строившиеся последние несколько десятилетий, оснащены защитными оболочками. Их применение необходимо для защиты в случае внутренней аварии с разрывом крупных трубопроводов и потерей теплоносителя (англ. LOCA, Loss-of-coolant accident), а также в случае внешних событий: землетрясений, цунами, ураганов, смерчей, падений самолётов, взрывов, ракетных ударов и т.д[1][4].

Гермооболочка рассчитывается на выполнение своих функций с учётом всех возможных механических, тепловых и химических воздействий, которые являются следствием истечения теплоносителя и расплавления активной зоны. Чаще всего гермооболочки имеют вспомогательное оборудование: локализующие системы безопасности для конденсации пара и снижения таким образом давления, специальные вентиляционные системы, оснащёнными фильтрами очистки от иода, цезия и других продуктов деления[5][6].

В зависимости от типа реактора и специфических внешних угроз (например, сейсмичности) конструкция гермооболочек может сильно различаться. Большинство современных контейнментов (около 95 %) — оболочечные сооружения различного размера из бетона, армированного или предварительно-напряжённого, чаще всего цилиндрической формы[1][7].

Герметичная оболочка — комплексная структура, в которую входят также системы сложных трубных и кабельных проходок большого размера. За гермооболочками ведут специальный технический надзор с регулярными испытаниями их функций и инспекциями государственных органов. К материалам, монтажу, наладке и эксплуатации предъявляются строгие требования[1][8].

Первая гермооболочка в мире была сооружена на АЭС Коннектикут Янки?! (США), которая была введена в работу в 1968 году.

Различия по типам реакторов

Водо-водяные реакторы

Полусферическая гермооболочка немецкой АЭС Графенхайнфельд[нем.]
Ровенская АЭС. В советских реакторах ВВЭР-1000 гермооболочку окружает сооружение со вспомогательными системами (обстройка).

В гермооболочках водо-водяных реакторов располагается основное оборудование реакторной установки: реактор, циркуляционные петли первого контура, главные циркуляционные насосы, парогенераторы, а также центральный зал, бассейн выдержки отработавшего топлива, полярный кран, некоторые вспомогательные системы и другое оборудование. Почти все использующиеся гермооболочки так называемого «сухого» типа[9][3].

Для водо-водяных реакторов главным фактором, обуславливающим необходимость гермооболочки, является необходимость восприятия нагрузки из-за повышения давления, связанного с разрывом трубопроводов первого контура. В контейнменте всегда поддерживается небольшое разрежение для смягчения действия ударной волны. Главной вспомогательной системой является спринклерная система, обеспечивающая распыление холодной воды из форсунок под куполом для конденсации пара и снижения таким образом давления[6][10][11].

Железобетонные и предварительно-напряжённые оболочки впервые появились в США. Первая, железобетонная, была сооружена на АЭС Коннектикут Янки?!, которая была введена в работу в 1968 году. Предварительное напряжение было впервые применено на АЭС Роберт Е. Джинна[англ.] (пуск в 1969 году), но лишь частичное, вертикальное в стенах. Полное предварительное напряжение стен и купола было впервые применено на АЭС Палисадес?! (пуск в 1971 году). Затем практика строительства гермооболочек из предварительно-напряжённого железобетона стала всё шире распространяться в США, Канаде, Японии, Бельгии (АЭС Тианж?!, блок 1, 1975 год), Франции (АЭС Фессенхейм[фр.], блоки 1—2, 1977 год), СССР. Первое применение такой гермооболочки в советском реакторостроении — АЭС Ловииса c реакторами ВВЭР-440 в Финляндии (первый блок пущен в 1977 году), затем, начиная с Нововоронежской АЭС (блок 5, пуск в 1980) в СССР строились блоки с ВВЭР-1000, оснащённые гермооболочками[9][12].

Гермооболочки водо-водяных реакторов имеют большие размеры: обычно объём от 75 000 до 100 000 м³, в советских и российских проектах — от 65 000 до 67 000 м³. Такой большой объём необходим для восприятия энергии, выделяющейся при аварии. В большинстве случаев они рассчитаны на внутреннее давление в 0,5 МПа. Существует два подхода:

  • одиночная оболочка с внутренней металлической облицовкой. Наиболее распространены, используются в большинстве стран, в том числе в США, Японии, России. Имеют в основном цилиндрическую форму, для большинства немецких проектов характерна стальная оболочка полусферической формы.
  • двойная, часто большим пространством между оболочками, с внутренней металлической облицовкой или без неё (так называемый «французский» вариант). Внешняя, не напряжённая оболочка для защиты от внешних воздействий и внутренняя, предварительно-напряжённая, для локализации аварий с разгерметизацией первого контура. Во Франции для реакторов мощностью от 1300 МВт используются двойные оболочки, также они применяются в последних энергоблоках в Бельгии[4]. Вариант с двойной гермооболочкой первоначально рассматривался и в СССР для реакторов ВВЭР-1000, однако решением председателя Госкомитета СССР по использованию атомной энергии Петросянца был выбран одиночный вариант[13]. В 2000-х годах для нового проекта АЭС-2006 с реакторами ВВЭР-1200 Россией было решено использовать двойную гермооболочку со стальной внутренней облицовкой. Объём внутренней оболочки — 65 000 м³, между внутренней и внешней оболочками — пространство объёмом 18 000 м³[14].

Другие виды, кроме «сухих» гермооболочек, для водо-водяных реакторов последние десятилетия не сооружаются. Ранее в малом количестве использовалось ещё два типа, имевших меньшие размеры[9]:

  • c ледовым конденсатором в пределах гермооболочки, который способен конденсировать пар в случае аварии (например, станции Секвойя?! и Уоттс Бар[англ.] в США)[6];
  • с глубоким разрежением в гермооболочке, для сглаживания резкого воздействия и частичной компенсации повышающегося давления при аварии.

Типичные характеристики

Строящаяся Нововоронежская АЭС-2. На дальнем плане внутренняя гермооболочка с отверстием в месте, где будет шлюз для прохода персонала
Демонтаж контейнмента
Сооружение гермооболочки Балаковской АЭС

Геометрия

Чаще всего гермооболочки имеют форму цилиндра со полусферическим куполом, опирающимся на бетонное основание.

  • внутренний диаметр от 37 до 45 метров;
  • толщина стен и купола от 0,8 до 1,3 метра;
  • толщина основания от 1 м (скальная порода или опора на специальное сооружение, как в реакторах ВВЭР-1000) до 5 м (недостаточно твёрдый грунт под основанием, высокая сейсмичность, предварительно-напряжённое основание)[15].

Проходки

Оборудование внутри гермооболочки связано с многочисленными вспомогательными и аварийными системами снаружи, поэтому через стены необходим вход трубопроводов и кабелей, для чего в гермооболочке предусматривается система герметичных трубных и кабельных проходок различного размера. В среднем их около 120. Самым большими отверстиями являются: транспортный люк для загрузки/выгрузки оборудования и топлива — диаметр примерно 8 метров; основной и аварийные шлюзы для прохода персонала — по 3 метра; проходки паропроводов — 1,3 метра[15].

Максимальные расчётные параметры при аварии

  • давление чаще всего 0,5 МПа;
  • температура чаще всего 150 °C[15].

Напряжение и прочность

В среднем напряжение цилиндрической части типичного предварительно-напряжённого контейнмента при нормальной эксплуатации — 10 МПа в тангециальном направлении и 7 МПа в вертикальном направлении, что обеспечивает прочность железобетона порядка 40 МПа[15].

Облицовка

Внутренняя облицовка, если она имеется, чаще всего из стали, толщиной 6…8 мм. Облицовка требуется для улучшения герметизации и большей устойчивости к нагрузкам[15].

Расход материалов

Указанные величины сильно разнятся в зависимости от проекта.

Одиночная оболочка с облицовкой (для энергоблока мощностью около 900 МВт)[15]:

Материал Контейнмент Основание Всего
Бетон, м³ 8 000 5 000 13 000
Арматура, т 1 000 800 1 800
Преднапряжённая сталь, т 1 000 1 000
Стальная облицовка, т 500 150 650

Двойная оболочка без облицовки (для энергоблока мощностью около 1400 МВт)[15]:

Материал Внутренняя оболочка Внешняя оболочка Основание Всего
Бетон, м³ 12 500 6 000 8 000 26 500
Арматура, т 1 150 850 1 500 3 500
Преднапряжённая сталь, т 1 500 1 500

Кипящие реакторы

Упрощённое схематическое изображение энергоблока с распространённым кипящим реактором General Electric
10 — бетонная гермооболочка;
19 — стальная оболочка;
24 — бак-барботёр
Возведение оболочки блока АЭС Браунз-Ферри?!. На переднем плане съёмный колпак

Большинство кипящих реакторов работают в США, Японии (компания General Electric и её лицензиаты, Toshiba и Hitachi), Швеции (компания ABB) и Германии (компания Kraftwerk Union[нем.]).

Все кипящие реакторы проектируются с системами снижения давления в гермооболочке. Контейнмент состоит из двух главных частей — сухой шахты (сухого бокса) реактора (англ. dry-well) и бака-барботёра (англ. wet-well). В случае аварии с потерей теплоносителя в пределах гермообъёма, пар направляется с помощью козырьков (направляющих аппаратов) в бак-барботёр с водой, где происходит его конденсация. В дополнение имеются также системы с распылением воды в гермообъёме. В связи с такой конструкцией объёмы оболочек довольно малы — около 1/6 размера от «сухой» оболочки водо-водяных реакторов. Почти все вспомогательные системы располагаются в здании, окружающем гермооболочку. Это здание выполняет роль второго контайнмента (англ. secondary containment), в нём поддерживается слабое разрежение[16][17][18].

Большинство первых проектов General Electric и её лицензиатов в различных странах имеют бетонный контейнмент со стальной внутренней оболочкой грушевидной формы, отделяющей сухой бокс от бака-барботёра. В Скандинавии, блоки компании ABB, например в Швеции и Финляндии (АЭС Олкилуото[англ.]*), оснащены гермооболочками из предварительно-напряжённого железобетона со стальной облицовкой, закрытого в верхней части стальным куполом. Основание и верхняя часть предварительно-напряжены лишь частично. В Германии энергоблоки Kraftwerk Union[нем.] первоначально оснащались стальными полусферическими гермооболочками, затем проектные решения изменились на цилиндрические оболочки из предварительно-напряжённого железобетона со стальной облицовкой и дополнительной защитой от падения самолётов в верхней части (блоки B и C АЭС Гундремминген?!). В энергоблоках с улучшенными кипящими реакторами, которые строит General Electric и его лицензиаты в Японии и Тайване, гермооблочка интегрирована в здание реакторного отделения таким образом, что уменьшился общий размер сооружения и увеличилась сейсмоустойчивость за счёт понижения центра тяжести[16][17][18].

Для решения проблемы скопления водорода, которая стоит в кипящих реакторах значительно острее из-за меньших размеров оболочки, в ранних конструкциях контейнментов применяется заполнение сухой шахты реактора инертным газом (например, чистым азотом), в более поздних проектах предусматриваются системы дожигания водорода[6][19].

Типичные характеристики

Геометрия

Типичная оболочка — цилиндр (часто с шарообразным утолщением в нижней части), установленный на массивной плите и увенчанный плитой из предварительно-напряжённого железобетона со съёмным металлическим колпаком для доступа к реактору. Внутренний диаметр обычно 26, высота 35 метров, у ABWR — диаметр на 3 метра больше при 29,5-метровой высоте[20].

Проходки

Количество отверстий — около 100, причём под транспортный люк (самое большое у PWR) отсутствует. Шлюзы для персонала имеют диаметр 2,5 метра[20].

Максимальные расчётные параметры при аварии

Расчётные параметры в среднем несколько выше, чем у PWR: давление — обычно 0,6 МПа, температура — 170 °С[20].

Облицовка

Внутренняя облицовка из стали толщиной 6…10 мм[20].

Тяжёловодные реакторы

Энергоблок АЭС Пикеринг?!, на заднем плане сооружение для сброса давления
АЭС Брюс?!, вакуумное сооружение слева от энергоблоков

Тяжёловодные реакторы в основном известны под названием CANDU, это канадское национальное направление. Эти реакторы Канада также строила в Южной Корее, Пакистане, Румынии, Китае и Аргентине. Другое государство, где реакторы этого типа являются национальным направлением, — Индия. Также их строил немецкий Kraftwerk Union[нем.], например на АЭС Атуча?! в Аргентине.

Примером стандартного для CANDU дизайна гермооболочек могут послужить четыре энергоблока АЭС Пикеринг?!. Все их цилиндрические оболочки, в которых находятся оборудование первого контура и парогенераторы, соединены с отдельно стоящим специальным «вакуумным» сооружением объёмом 82 000 м³, в котором поддерживается разрежение 0,007 МПа. В случае аварии с повышением давления в гермооболочке одного из блоков, происходит разрыв мембраны на трубопроводе и аварийный блок соединяется с вакуумным сооружением. Таким образом избыточное давление полностью сбрасывается менее, чем за 30 секунд, даже в случае несрабатывания аварийных систем энергоблоков. И гермооболочки, и вакуумное сооружение оснащены спринклерными (распылительными) и вентиляционными системами для конденсации пара и снижения давления. Также в вакуумном сооружении имеется дополнительный бак с аварийным запасом воды для этих целей. Расчётное давление оболочек реакторов составляет 0,42 МПа с вакуумным сооружением и 0,19 МПа без него. Гермооболочки выполнены из предварительно-напряжённого железобетона, вакуумное сооружение — из железобетона. Внутренняя облицовка оболочек — из резины на основе эпоксидных смол и винила, армированной стеклопластиком, вакуумное сооружение без облицовки. В более поздних проектах, например канадской АЭС Брюс?!, облицовка оболочек выполнена стальной, а железобетон вакуумного сооружения предварительно напряжён[21][22][23].

Гермооболочки индийских реакторов развивались в другом направлении. В отличие от канадских реакторов, индийские оболочки двойные, без внутренней облицовки и с баком-барботёром в гермообъёме. Контейнмент разделён водонепроницаемыми перегородками на сухой бокс и бак-барботёр. В случае аварии пароводяная смесь через вентиляционную систему сбрасывается из сухого бокса в бак-барботёр и конденсируется. Блоки АЭС Раджастан?! (пуск в 1981 году) стал первым в Индии из предварительно-напряжённого железобетона (только купол, стены — из железобетона). В последующем проекте, АЭС Мадрас?!, применено разделение объёмов на сухой бокс и барботёр. Гермооболочки энергоблоков этой станции частично двойные, внутренняя оболочка из предварительно-напряжённого, а внешняя — из монолитного, не армированного бетона. Следующим этапом эволюции стали гермооболочки АЭС Нарора?!, в которых внешняя оболочка выполнена из железобетона. Затем, на АЭС Какрапар?! внешний купол был выполнен съёмным для возможности замены парогенераторов. Этот дизайн с небольшими изменениями использовался на множестве индийских энергоблоков[21].

Другие типы

Энергоблок закрытой АЭС Донрэй[англ.] (реактор на быстрых нейтронах) в Великобритании со стальной гермооболочкой

Реакторы-размножители на быстрых нейтронах были разработаны и функционировали в нескольких странах (США, Японии, Великобритании, Франции, СССР), однако в настоящий момент работает лишь единственный в мире, БН на Белоярской АЭС в России. Так как теплоносителем в таких реакторах является жидкий металл, а не вода, гермооболочки, бетонные или стальные, расчитываются на значительно меньшее давление — 0,05—0,15 МПа[24].

Газоохлаждаемые реакторы (Magnox[англ.]* и AGR[англ.]*) — национальное направление в реакторостроении Великобритании. Такие реакторы не имеют гермооболочек. Основное оборудование в них интегрировано с активной зоной в корпус из предварительно-напряжённого железобетона, который таким образом играет роль контейнмента[24].

Высокотемпературные газоохлаждаемые реакторы строились в 60-е и все были закрыты к концу 80-х годов. В США компанией General Atomics?! были построены несколько энергоблоков станций Форт-Сент-Врейн[англ.] и Пич-Боттом?!. Гермооболочки цилиндрической формы из железобетона c куполом, внутри находятся реактор из предварительно-напряжённого железобетона и основное оборудование. Расчётное давление — 0,35 МПа. В Германии действовал реактор THTR-300[англ.] компании Nukem[нем.] без гермооболочки, с цилиндрическим реактором из предварительно-напряжённого железобетона[24].

В энергоблоках с реакторами РБМК, которые строились в СССР, гермооболочки не использовались из-за больших размеров реактора. Роль контейнмента выполняет система бетонных боксов вокруг реактора, в которых находится основное оборудование, и бассейн-барботёр для сброса пара в случае аварийной ситуации[24][25].

Современные тенденции

Монтаж ловушки расплава на Нововоронежской АЭС-2

Современные тенденции в сооружении гермооболочек направлены, в основном, в сторону наращивания пассивных, то есть не требующих источников энергии и сигнала на включение систем. В этом направлении активно развивались все аварийные системы в реакторах последнего, 3+ поколения. В настоящее время ведётся строительство четырёх ВВЭР-1200 (Нововоронежская АЭС-2 и Ленинградская АЭС-2) в России, четырёх AP1000?! (компания Westinghouse?!) в Китае и двух EPR[англ.] (Areva совместно с Siemens) в Финляндии и Франции. Россия уже использовала новые решения при строительстве Тяньваньской АЭС в Китае и АЭС Куданкулам в Индии. Существует и целый ряд других проектов различных компаний мира, реализация которых ещё не начата.

Во всех новых проектах гермооболочки двойные, внешняя для защиты от внешних воздействий и внутренняя для локализации аварий с разгерметизацией первого контура. В ВВЭР-1200 и EPR внешняя оболочка из железобетона, внутренняя из предварительно-напряжённого железобетона. В AP1000 внутренняя оболочка стальная. Во всех проектах между внутренней и внешней оболочками в случае аварии организуется естественная циркуляция воздуха для охлаждения внутренней оболочки[10][14][26][27][28].

Другим направлением в повышении безопасности является защита гермооболочки в случае расплавления ядерного топлива и прожигания им корпуса реактора. Впервые подобное устройство было сооружено в контейнменте Тяньваньской АЭС с ВВЭР-1000 (пуск в 2007 году) и принято для проектов с ВВЭР-1200. В российских гермооболочках ловушка расплава сооружается под реактором, в её корпусе находится наполнитель, в основном из оксидов железа и алюминия[29]. Наполнитель растворяется в расплаве топлива для уменьшения его объёмного энерговыделения и увеличения поверхности теплообмена, а вода по специальным трубопроводам заливает эту массу[14]. В EPR ловушка организована по другому — расплав, прожёгший корпус, попадает на наклонную поверхность, направляющую его стекание в бассейн с водой и охлаждаемым металлическим днищем специальной конструкции. В AP1000 ловушка расплава отсутствует, но предусмотрена система для предотвращения прожигания корпуса — шахта реактора в случае такой аварии заливается водой, охлаждающей корпус снаружи[27][28].

Известным нововведением в области пассивной безопасности являются каталитические рекомбинаторы водорода. Их можно устанавливать и на уже работающих блоках (на множестве по всему миру они уже установлены), в обязательный набор элементов они входят в новых проектах. Рекомбинаторы — небольшие устройства, которые во множестве устанавливаются по всему гермообъёму и обеспечивают снижение концентрации водорода при авариях с его выделением. Рекомбинаторы не требуют источников энергии и команд на включение — при достижении небольшой концентрации водорода (0,5—1,0 %), процесс его поглощения рекомбинаторами начинается самопроизвольно[27][30].

Литература

  • Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — 117 p. — ISBN 2-883-94-053-3.
  • Bangash, M.Y.H. Structures for Nuclear Facilities. — Heidelberg, Dordrecht, London, New York: Springer, 2011. — 457 p. — ISBN 978-3-642-12560-7.

Примечания

  1. 1 2 3 4 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 1. — 117 p. — ISBN 2-883-94-053-3.
  2. Кайоль А., Щапю К., Щоссидон Ф., Кюра Б., Дюонг П., Пелль П., Рище Ф., Воронин Л. М., Засорин Р. Е., Иванов Е. С., Козенюк А. А., Куваев Ю. Н., Филимонцев Ю. Н. Безопасность атомных станций. — Paris: EDF-EPN-DSN, 1994. — С. 29—31. — 256 с. — ISBN 2-7240-0090-0.
  3. 1 2 Paul Ih-fei Liu. Energy, technology, and the environment. — New York: ASME, 2005. — P. 165—166. — 275 p. — ISBN 0-7918-0222-1.
  4. 1 2 Swarup R., Mishra S. N., Jauhari V. P. Environmental Science And Technology. — New Delhi: Mittal publications, 1992. — P. 68—79. — 329 p. — ISBN 81-7099-367-9.
  5. Самойлов О. Б., Усынин Г. Б., Бахметьев А. М. Безопасность ядерных энергетических установок. — М.: Энергоатомиздат, 1989. — С. 26—27. — 280 с. — ISBN 5-283-03802-5.
  6. 1 2 3 4 Jan Beyea, Frank Von Hippel. Containment of a reactor meltdown (англ.) // Bulletin of the Atomic Scientists. — 1982. — Vol. 38, no. 7. — P. 52—59. — ISSN 0096-3402.
  7. Ray Nelson. Manufactured Meltdown (англ.) // Popular Science. — Bonnier Group, 1988. — Vol. 232, no. 1. — P. 66—67. — ISSN 0161-7370.
  8. Nuclear powerplant standardization : light water reactors. — Washington: United States Government Printing Office, 1981. — P. 19—20. — 63 p.
  9. 1 2 3 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 9—11. — 117 p. — ISBN 2-883-94-053-3.
  10. 1 2 Amano R.S., Sunden B. Thermal Engineering in Power Systems. — Southampton: WIT Press, 2008. — P. 142—149. — 388 p. — ISBN 978-1-84564-062-0.
  11. Anthony V. Nero, jr. A Guidebook to Nuclear Reactors. — Berkeley, Los Angeles, London: University of California Press, 1979. — P. 86—92. — 281 p. — ISBN 0-520-03482-1.
  12. Андрюшин И. А., Чернышёв А. К., Юдин Ю. А. Укрощение ядра. Страницы истории ядерного оружия и ядерной инфраструктуры СССР. — Саров, 2003. — С. 354—356. — 481 с. — ISBN 5 7493 0621 6.
  13. Charles K. Dodd. Industrial decision-making and high-risk technology: siting nuclear power facilities in the USSR. — Lanham, London: Rowman & Littlefield, 1994. — P. 87. — 212 p. — ISBN 0-8476-7847-4.
  14. 1 2 3 Андрушечко С. А., Афоров А. М., Васильев Б. Ю., Генералов В. Н., Косоуров К. Б., Семченков Ю. М., Украинцев В. Ф. АЭС с реактором типа ВВЭР-1000. От физических основ эксплуатации до эволюции проекта. — М.: Логос, 2010. — 604 с. — 1000 экз. — ISBN 978-5-98704-496-4.
  15. 1 2 3 4 5 6 7 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 19—22. — 117 p. — ISBN 2-883-94-053-3.
  16. 1 2 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 12—15. — 117 p. — ISBN 2-883-94-053-3.
  17. 1 2 M.Ragheb. Containment structures (англ.). University of Illinois at Urbana–Champaign (16 марта 2011). Дата обращения: 21 марта 2011.
  18. 1 2 Anthony V. Nero, jr. A Guidebook to Nuclear Reactors. — Berkeley, Los Angeles, London: University of California Press, 1979. — P. 103—107. — 281 p. — ISBN 0-520-03482-1.
  19. George A. Greene. Heat transfer in nuclear reactor safety. — San Diego: Academic Press, 1997. — P. 308. — 357 p. — ISBN 0-12-020029-5.
  20. 1 2 3 4 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 24. — 117 p. — ISBN 2-883-94-053-3.
  21. 1 2 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 16—17. — 117 p. — ISBN 2-883-94-053-3.
  22. Anthony V. Nero, jr. A Guidebook to Nuclear Reactors. — Berkeley, Los Angeles, London: University of California Press, 1979. — P. 116. — 281 p. — ISBN 0-520-03482-1.
  23. Canada enters the nuclear age: a technical history of Atomic Energy of Canada Limited as seen from its research laboratories. — Canada: AECL, 1997. — P. 314—318. — 439 p. — ISBN 0-7735-1601-8.
  24. 1 2 3 4 Nuclear containments: state-of-art report. — Stuttgart: Fédération internationale du béton, 2001. — P. 18. — 117 p. — ISBN 2-883-94-053-3.
  25. Доллежаль Н.А., Емельянов И.Я. Канальный ядерный энергетический реактор. — М.: Атомиздат, 1980. — P. 153—169. — 208 p.
  26. Alan M. Herbst, George W. Hopley. Nuclear energy now: why the time has come for the world's most misunderstood energy source. — New Jersey: John Wiley & Sons, 2007. — P. 150—153. — 229 p. — ISBN 978-0-470-05136-8.
  27. 1 2 3 Saito T., Yamashita J., Ishiwatari Y., Oka. Y. Advances in Light Water Reactor Technologies. — New York, Dordrecht, Heidelberg, London: Springer, 2011. — 295 p. — ISBN 978-1-4419-7100-5.
  28. 1 2 AP1000 (англ.). Westinghouse (16 марта 2011). Дата обращения: 22 марта 2011.
  29. Гусаров В. В., Альмяшев В. И., Хабенский В. Б., Бешта С. В., Грановский В. С. Новый класс функциональных материалов для устройства локализации расплава активной зоны ядерного реактора // Российский химический журнал. — М., 2005. — № 4. — С. 17—28.
  30. Келлер В. Д. Пассивные каталитические рекомбинаторы водорода для атомных электростанций // Теплоэнергетика. — М.: МАИК «Наука/Интерпериодика», 2007. — № 3. — С. 65—68. — ISSN 0040-3636.