Нейтрино: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
отмена правки 38386023 участника 85.172.150.78 (обс)Без источников и в таком оформлении?
→‎Ссылки: очень неплохая книга, содержащая в т.ч. открытые вопросы физики нейтрино
Строка 74: Строка 74:
== Ссылки ==
== Ссылки ==
* [http://www.femto.com.ua/articles/part_2/2430.html ''Нейтрино'', Физическая энциклопедия, т.3 — М.:Большая Российская Энциклопедия.]
* [http://www.femto.com.ua/articles/part_2/2430.html ''Нейтрино'', Физическая энциклопедия, т.3 — М.:Большая Российская Энциклопедия.]
* {{статья|автор=Samoil Bilenky|заглавие=Introduction to the Physics of Massive and Mixed Neutrinos|ссылка=|язык=en|издание=Lecture Notes in Physics|тип=|год=2010|том=817|страницы=|doi=10.1007/978-3-642-14043-3|issn=}}


== См. также ==
== См. также ==

Версия от 12:16, 13 октября 2011

электронное нейтрино
мюонное нейтрино
тау-нейтрино (νe
νμ
ντ
)
Состав Элементарная частица
Семья Фермионы
Группа Лептоны
Поколение 1 (νe)
2 (νμ)
3 (ντ)
Участвует во взаимодействиях слабое,
гравитационное
Кол-во типов 3
Масса меньше 0,28 эВ, но не нулевая у всех ароматов (νe, νμ, ντ)
Время жизни стабильны
Каналы распада нет
Квантовые числа
Электрический заряд 0
Спин ½ ħ
Логотип Викисклада Медиафайлы на Викискладе

Нейтри́но — нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях, и относящаяся к классу лептонов. Нейтрино малой энергии чрезвычайно слабо взаимодействуют с веществом: так, нейтрино с энергией порядка 3-10 МэВ имеют в воде длину свободного пробега порядка 1018 м (около 100 св. лет). Также известно, что каждую секунду через площадку на Земле в 1 см² проходит около 6×1010 нейтрино, испущенных Солнцем[1]. Однако никакого воздействия, например, на тело человека они не оказывают. В то же время нейтрино высоких энергий успешно обнаруживаются по их взаимодействию с мишенями[2].

Свойства нейтрино

Каждому заряженному лептону соответствует своя пара нейтрино/антинейтрино:

Масса нейтрино крайне мала. Верхняя экспериментальная оценка суммы масс всех типов нейтрино составляет всего 0,28 эВ[3][4]. Разница квадратов масс нейтрино разных поколений, полученная из осцилляционных экспериментов, не превышает 2,7⋅10−3 эВ².

Масса нейтрино важна для предположения объяснения феномена скрытой массы в космологии, так как, несмотря на её малость, возможно, концентрация нейтрино во Вселенной достаточно высока, чтобы существенно повлиять на среднюю плотность.

Если нейтрино имеют ненулевую массу, то различные виды нейтрино могут преобразовываться друг в друга. Это так называемые нейтринные осцилляции, в пользу которых свидетельствуют наблюдения солнечных нейтрино и угловой анизотропии атмосферных нейтрино, а также проведённые в начале этого века эксперименты с реакторными (см. KamLAND) и ускорительными нейтрино. Кроме того, существование нейтринных осцилляций напрямую подтверждено опытами в Садбери, в котором были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»). Подтверждение нейтринных осцилляций потребует внесения изменений в Стандартную Модель.

В экспериментах с рождением ультрарелятивистских частиц, нейтрино обладают отрицательной спиральностью, а антинейтрино — положительной.[5]

История открытия

Одно из первых наблюдений взаимодействия нейтрино в пузырьковой камере

Одной из основных проблем в ядерной физике 20-30-х годов ХХ века была проблема бета-распада: спектр электронов, образующихся при β-распаде, измеренный английским физиком Джеймсом Чедвиком ещё в 1914 году, имеет непрерывный характер, то есть, из ядра вылетают электроны самых различных энергий.

С другой стороны, развитие квантовой механики в 1920-х годах привело к пониманию дискретности энергетических уровней в атомном ядре: это предположение было высказано австрийским физиком Лизой Мейтнер в 1922 году. То есть, спектр вылетающих при распаде ядра частиц должен быть дискретным, и показывать энергии, равные разницам энергий уровней, между которыми происходит переход при распаде. Таковым, например, является спектр альфа-частиц при альфа-распаде.

Таким образом, непрерывность спектра электронов β-распада ставила под сомнение закон сохранения энергии. Вопрос стоял настолько остро, что в 1931 г. знаменитый датский физик Н. Бор на Римской конференции выступил с идеей о несохранении энергии! Однако было и другое объяснение — потерянную энергию уносит какая-то неизвестная и незаметная частица.

Гипотезу о существовании чрезвычайно слабо взаимодействующей с веществом частицы выдвинул 4 декабря 1930 г. Паули — не в статье, а в неформальном письме участникам физической конференции в Тюбингене:

…имея в виду … непрерывный β-спектр, я предпринял отчаянную попытку спасти «обменную статистику» и закон сохранения энергии. Именно имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином 1/2… Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0,01 массы протона. Непрерывный β-спектр тогда стал бы понятным, если предположить, что при β-распаде вместе с электроном испускается ещё и «нейтрон», таким образом, что сумма энергий «нейтрона» и электрона остаётся постоянной.
Я признаю, что такой выход может показаться на первый взгляд маловероятным… Однако, не рискнув, не выиграешь; серьёзность положения с непрерывным β-спектром хорошо проиллюстрировал мой уважаемый предшественник г-н Дебай, который недавно заявил мне в Брюсселе: «О… об этом лучше не думать вовсе, как о новых налогах».
«Открытое письмо группе радиоактивных, собравшихся в Тюбингене», цит. по М. П. Рекало, «Нейтрино».

Впоследствии нейтроном была названа, как оказалось, другая элементарная частица, наряду с протоном входящая в состав атомных ядер. А предсказанная Паули частица в работах 1933—1934 итальянца Энрико Ферми на итальянский манер была названа «нейтрино».

На Сольвеевском конгрессе 1933 г. в Брюсселе Паули выступил с рефератом о механизме β-распада с участием лёгкой нейтральной частицы со спином 1/2. Это выступление было фактически первой официальной публикацией, посвящённой нейтрино.

Перспективы использования

Одно из перспективных направлений использования нейтрино — это нейтринная астрономия. Известно, что звёзды, кроме света, излучают значительный поток нейтрино, которые возникают в процессе ядерных реакций. Поскольку на поздних стадиях звёздной эволюции за счёт нейтрино уносится до 90 % излучаемой энергии (нейтринное охлаждение), то изучение свойств нейтрино (в частности — энергетического спектра солнечных нейтрино) помогает лучше понять динамику астрофизических процессов. Кроме того, нейтрино без поглощения проходят огромные расстояния, что позволяет обнаруживать и изучать ещё более удалённые астрономические объекты.[6]

Другим (практическим) применением является развиваемая в последнее время нейтринная диагностика промышленных ядерных реакторов. Проведённые в конце XX века физиками Курчатовского института эксперименты показали перспективность этого направления, и сегодня в России, Франции, Италии и других странах ведутся работы по созданию нейтринных детекторов, способных в режиме реального времени измерять реакторный нейтринный спектр и тем самым контролировать как мощность реактора, так и композитный состав топлива (включая наработку оружейного плутония).

Теоретически потоки нейтрино могут быть использованы для создания средств связи, что привлекает интерес военных: частица теоретически делает возможной связь с подводными лодками, находящимися на глубине[7].

Интересные факты

22 сентября 2011 года коллаборация OPERA объявила о регистрации возможного превышения скорости света мюонными нейтрино (на 0,00248 %).[8][9][10] Нейтрино от ускорителя SPS (ЦЕРН, Швейцария) прибывают к детектору (находящемуся на расстоянии 730 км в подземной лаборатории Гран-Сассо, Италия) на 61±10 наносекунд раньше расчётного времени; это значение получено после усреднения по 16 тысячам нейтринных событий в детекторе за три года. Физики обратились к своим коллегам с просьбой проверить результаты в подобных экспериментах MINOS (лаборатория Fermilab возле Чикаго) и T2K (Япония).

В культуре

Примечания

  1. Наше Солнце
  2. Физическая энциклопедия. Нейтри́но. Клайд Коуэн[англ.] и Фредерик Райнес, 1953—57
  3. Астрономы получили самую точную оценку массы «частицы-призрака». РИА Новости (22 июня 2010). Дата обращения: 22 июня 2010. Архивировано 22 августа 2011 года.
  4. Shaun A. Thomas, Filipe B. Abdalla, and Ofer Lahav. Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey (англ.) // Phys. Rev. Lett.. — 2010. — Vol. 105, iss. 3. — P. 031301.
  5. Нейтрино — статья из Физической энциклопедии
  6. Труды Бруно Понтекорво
  7. Элементы: Частица-призрак: нейтрино "Группа исследователей из Военно-морской исследовательской лаборатории, опубликовавших в 1977 году в журнале Science статью «Связь с помощью нейтринных лучей» (Telecommunication with Neutrino Beams), "
  8. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam 22 Sep 2011.
  9. Элементы — новости науки: Эксперимент OPERA сообщает о наблюдении сверхсветовой скорости нейтрино
  10. Lenta.ru: Прогресс: Торопливые нейтрончики
  11. Дискография Тимура Шаова

Ссылки

См. также

Шаблон:Link FA