Ветрогенератор

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Работа ветрогенератора
Промышленные ветрогенераторы в Северном море
Ветер раскручивает ротор. Выработанное электричество подаётся через контроллер на аккумуляторы. Инвертор преобразует напряжение на контактах аккумулятора в пригодное для использования

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим ее преобразованием в электрическую энергию.

Ветрогенераторы можно разделить на две категории: промышленные и бытовые (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветровая электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 7,5 МВт (см. Enercon E-126)[1].

Мощность ветрогенератора зависит от скорости ветра и ометаемой площади ~N= pSV^3/2,

где — ~V скорость ветра, ~p — плотность воздуха, ~S — ометаемая площадь.

Типы ветрогенераторов[править | править вики-текст]

Существуют классификации ветрогенераторов по количеству лопастей, по материалам, из которых они выполнены, по оси вращения и по шагу винта.[2]

Существуют два основных типа ветротурбин:

  • с вертикальной осью вращения ("карусельные" — роторные (в т.ч. «ротор Савониуса»), "лопастные" ортогональные — ротор Дарье);
  • с горизонтальной осью вращения (крыльчатые).

Преимущества и недостатки разных типов ВЭУ[править | править вики-текст]

Широкое использование горизонтально-осевых ВЭУ обусловлено их высокой эффективностью. Даже самый посредственный лопастной ветряк легко достигает коэффициента использования энергии ветрового потока (КИЭВ) в 30 %. А самый тщательно отлаженный роторный, в лучшем случае, — 20 %[3].

Устройство[править | править вики-текст]

ВЭУ состоит из:

  1. ветротурбины, установленной на мачте с растяжками и раскручиваемой ротором либо лопастями;
  2. электрогенератора;

полученная электроэнергия поступает в:

Промышленная ветровая установка
Устройство ветрогенератора

Состоит из:

  1. Фундамент
  2. Силовой шкаф, включающий силовые контакторы и цепи управления
  3. Башня
  4. Лестница
  5. Поворотный механизм
  6. Гондола
  7. Электрический генератор
  8. Система слежения за направлением и скоростью ветра (анемометр)
  9. Тормозная система
  10. Трансмиссия
  11. Лопасти
  12. Система изменения угла атаки лопасти
  13. Обтекатель
  • Система пожаротушения
  • Телекоммуникационная система для передачи данных о работе ветрогенератора
  • Система молниезащиты
  • Привод питча

Проблемы эксплуатации промышленных ветрогенераторов[править | править вики-текст]

Внутри башни
11 × E-126 бельгийской ВЭС Estinnes в июле 2010, за месяц до завершения строительства станции
11 × E-126 (11 × 7,5 МВт) бельгийской ВЭС Estinnes 10 октября 2010 года.

Промышленный ветрогенератор строится на подготовленной площадке за 7–10 дней. Получение разрешений регулирующих органов на строительство ветровой фермы может занимать год и более. Кроме того, для обоснования строительства ветроустановки или ветропарка необходимо проведение длительных (не менее года) исследований ветра в районе строительства. Эти мероприятия значительно увеличивают срок реализации ветроэнергетических проектов.

Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:

  • Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.
  • Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.
  • Отключение/поломка тормозной системы. При этом лопасть набирает слишком большую скорость и, как следствие, лопается.
  • Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.
  • Нестабильность работы генератора. Из-за того что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.
  • Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветровых электростанций и большой высоты, на которой происходит пожар. На современных ветрогенераторах устанавливаются системы пожаротушения.
  • Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.

Перспективные разработки[править | править вики-текст]

Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года[4][5]. Турбина под названием Hywind, разработанная[5] Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров. Аналогичные разработки ведутся в США.

Компания Magenn разработала специальный аппарат с установленным на нём ветрогенератором, который сам поднимается на высоту 120–300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.

Компания Windrotor предлагает конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.[источник не указан 534 дня]

В мае 2009 года в Германии компанией Advanced Tower Systems (ATS) был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне. Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %[6].

В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт[7].

Евросоюз создал исследовательский проект UpWind для разработки офшорного ветрогенератора мощностью 20 МВт[8].

В 2013 году японская компания Mitsui Ocean Development & Engineering Company разработала гибридную установку: на единой плавающей в воде оси установлена ветровая турбина и турбина, работающая от приливной энергии[9].

Крупнейшие производители[править | править вики-текст]

Таблица 10 крупнейших производителей промышленных ветрогенераторов в 2010 году[10], МВт:

Название Страна Объём производства, МВт.
1 Vestas ДанияFlag of Denmark.svg Дания 5 842
2 Sinovel КНРFlag of the People's Republic of China.svg КНР 4 386
3 GE Energy СШАFlag of the United States.svg США 3 796
4 Goldwind КНРFlag of the People's Republic of China.svg КНР 3 740
5 Enercon ГерманияFlag of Germany.svg Германия 2 846
6 Suzlon Energy ИндияFlag of India.svg Индия 2 736
7 Dongfang Electric КНРFlag of the People's Republic of China.svg КНР 2 624
8 Gamesa ИспанияFlag of Spain.svg Испания 2 587
9 Siemens Wind ГерманияFlag of Germany.svg Германия 2 325
10 United Power КНРFlag of the People's Republic of China.svg КНР 1 600

Цены[править | править вики-текст]

Компания Bloomberg New Energy Finance производит расчёт ценового индекса ветрогенераторов (Wind Turbine Price Index). С 2008 года до 2010 года средние цены на ветрогенераторы снизились на 15 %. В 2008 году средняя цена ветрогенератора составляла 1,22 млн евро за 1 МВт мощности.

В августе 2010 года средняя цена одного МВт ветрогенератора составляла 1,04 млн евро[11].

Малые ветрогенераторы[править | править вики-текст]

Малый роторный ветрогенератор на крыше здания
Парусный ветрогенератор

К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1 кВт относятся к микро-ветровой энергетике. Они применяются на яхтах, с/х фермах для водоснабжения и т. д.

Строение малой ветровой установки[править | править вики-текст]

  1. Ротор; лопасти; ветротурбина; хвост, ориентирующий ротор против ветра
  2. Генератор
  3. Мачта с растяжками
  4. Контроллер заряда аккумуляторов
  5. Аккумуляторы (обычно необслуживаемые на 24 В)
  6. Инвертор (= 24 В -> ~ 220 В 50Гц), подключенный к электросети

Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети.

Некоторые современные бытовые ИБП имеют модуль подключения источника постоянного тока специально для работы с солнечными батареями или ветрогенераторами. Таким образом, ветрогенератор может быть частью домашней системы электропитания, снижая потребление энергии от электросети.

Плюсы и минусы эксплуатации[править | править вики-текст]

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительную величину у основной массы производств на фоне других затрат[источник не указан 1067 дней]. Ключевым для потребителя остаётся надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии для использования в промышленности, получаемой от ветрогенераторов, являются:

  • Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (применяется инвертор, ранее для этой цели применялся умформер)
  • Необходимость автономной работы в течение некоторого времени (применяются аккумуляторы);
  • Необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор);

Считается, что применение малых автономных ветрогенераторов в быту малоцелесообразно из-за:

  • Высокой стоимости аккумуляторных батарей: ~ 25 % стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети);
  • Достаточно высокая стоимость инвертора (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в переменное напряжение стандарта бытовой электросети (220 В, 50 Гц);
  • Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

Однако, при наличии общей электросети и современного ИБП с двойным преобразованием эти факторы становятся неактуальными, также часто такие ИБП предусматривают возможность дополнения различными нестабильными источниками постоянного тока, такими как ветрогенератор или солнечная батарея.

Наиболее экономически целесообразным в настоящее время является получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

  • Отопление является основным энергопотребителем любого дома.
  • Схема ветрогенератора и управляющей автоматики кардинально упрощается.
  • Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
  • В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
  • Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно поддерживать в широком диапазоне: 19–25 °С; в бойлерах горячего водоснабжения: 40–97 °С, без ущерба для потребителей.

Развитие[править | править вики-текст]

Индустрия домашних ветрогенераторов активно развивается, и за вполне умеренные деньги уже сейчас можно приобрести ветровую установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором, а ветрогенераторы с вертикальными осями могут быть дополнены меньшими ветрогенераторами (например, турбина Дарье может быть дополнена ротором Савониуса. При этом одно другому не мешает — источники будут дополнять друг друга).

Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10–$0,11 за кВт·ч. Американская ассоциация ветровой энергетики (AWEA) ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч.

По данным AWEA, в США в 2006 г. было продано 6807 малых ветровых турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности). В остальном мире в 2006 г. были проданы 9502 малых турбины (без учёта США), их суммарная мощность 19 483 кВт.

Департамент Энергетики США (DoE) в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования. AWEA прогнозирует, что к 2020 году суммарная мощность малой ветровой энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветровые турбины будут установлены в 15 млн домах и на 1 млн малых предприятий. В отрасли малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.

В России тенденция установки ветрогенераторов для оснащения домов электричеством только зарождается. На рынке присутствуют буквально несколько производителей маломощных бытовых ветрогенераторов именно для домашнего использования. Цены на ветрогенераторы мощностью 1 кВт с полной комплектацией начинаются от 35–40 тыс. рублей (на 2012 год). Сертификация на установку данного оборудования не требуется.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]

Примечания[править | править вики-текст]

  1. E-126 // enercon.de
  2. Виды ветрогенераторов. Проверено 5 февраля 2013. Архивировано из первоисточника 11 февраля 2013.
  3. Имеются неподтверждённые научно слухи о достижении рекордного КИЭВ в 25 %, что весьма сомнительно
  4. В Норвегии запустят плавучую прибрежную ветровую турбину
  5. 1 2 Jorn Madslien. Floating wind turbine launched, BBC NEWS, London: BBC, стр. 5 June 2009. Проверено 20 августа 2014.
  6. New Tower Reaches High to Catch the Wind
  7. Spanish Companies Plan a 15-MW Wind Turbine December 1, 2010
  8. http://www.renewableenergyworld.com/rea/news/article/2012/07/wind-turbine-blades-push-size-limits?cmpid=rss Chris Webb Wind Turbine Blades Push Size Limits, 10.07.2012
  9. Hybrid Wind-Tidal Turbine To Be Installed off Japanese Coast Июль 12, 2013
  10. Tildy Bayar. World Wind Market: Record Installations, But Growth Rates Still Falling (англ.). renewableenergyworld.com (4 August 2011). — 10 крупнейших поставщиков 2010 года по данным компании. Проверено 28 мая 2013. Архивировано из первоисточника 28 мая 2013.
  11. Stephen Lacey. Wind Turbine Prices Remain Low (англ.). renewableenergyworld.com (4 August 2010). — По данным компании, цены ветряных турбин снизилась на 15% за последние два года. Проверено 28 мая 2013. Архивировано из первоисточника 28 мая 2013.